设为首页 | 加入收藏 | English
首 页   关于协会  协会动态  会员之声  学术交流  科普宣传  对外交流  癌症康复  期刊杂志  继教科技  科技奖励  协会党建  会员服务  媒体之声
     您当前的位置 : 中国抗癌协会  >  学术会议  >  学术研讨
环境肿瘤学前沿进展篇——《中国恶性肿瘤学科发展报告(2024)》
2025-09-05 10:41

1. 概述

研究表明,70%-90%的肿瘤发病率与环境因素相关,因此,减少可改变的环境危险因素成为减轻肿瘤负担的关键策略。环境肿瘤学是一门研究肿瘤发生内外环境因素、机制、预防、干预及诊疗措施的学科。它基于多学科交叉,整合宏观环境因素与微观分子生物学,为肿瘤防治提供新技术、新策略及新模式。

近年来,国内环境肿瘤学研究取得重要突破。在基础研究方面,揭示了空气污染、水污染、微塑料暴露、病毒感染等环境因素与肿瘤发生的关联机制;在应用研究领域,开发了基于EBV标志物的鼻咽癌早期筛查技术和环境暴露-多基因风险预测模型等创新方法。人工智能、深度学习及多组学分析等前沿技术的引入,显著提升了研究的精准性和效率。国际合作方面,环境肿瘤学在多次国际学术会议上受到广泛关注,推动了全球范围内环境肿瘤的防治研究合作交流。

在研究平台建设方面,国家癌症中心、中国医学科学院肿瘤医院、北京大学肿瘤医院及兰州大学环境肿瘤学中心等机构系统开展了肿瘤流行病学、分子病因学及精准筛查研究,构建了全国性肿瘤监测体系和高危人群筛查数据库。中国抗癌协会环境肿瘤学专业委员会推动环境肿瘤防治共建单位(基地)的建设,强化了癌症防控和环境健康监测能力。

在全球范围内,WHO、IARC、EPA、NCI等权威机构主导环境致癌物研究、风险评估和政策制定,推动了基因组学、单细胞测序、暴露组学等前沿技术在癌症早期筛查和个体化治疗中的应用。国际癌症基因组共享计划等跨学科合作项目,进一步促进了精准肿瘤防治和环境健康政策的优化。

中国政府通过《健康中国2030》规划纲要和《癌症防治行动实施方案(2023-2030年)》等政策,强化了环境健康管理、癌症早筛早诊及中西医结合创新研究。通过完善癌症监测网络、优化医疗资源配置、推进分级诊疗和健康教育,以及加强环境污染治理,为环境肿瘤学研究提供了政策保障。

未来环境肿瘤学的发展将聚焦以下方向:(1)构建全国性环境肿瘤数据库和实时监测网络,实现精准预警和风险评估;(2)深化基因-环境交互作用研究,揭示环境污染物致癌机制;(3)推动人工智能、基因组学等技术在肿瘤早筛、早诊和个性化治疗中的应用;(4)加强临床医学、基础医学、流行病学、公共卫生、环境科学以及食品药品安全等学科领域的交叉融合;(5)建设环境肿瘤防治共建单位(基地)或基地,整合多方资源,推动区域性和全国性环境肿瘤防控网络建设;(6)扩大国际合作,推动环境肿瘤防控政策的全球实施。未来五年,环境肿瘤学将向精准化、智能化和跨学科协作方向迈进,通过构建多层次、多领域协同的创新体系,为全球肿瘤防控体系建设提供科学依据和实践路径。

5. 2024年中国环境肿瘤学学科十大前沿进展(新成果、新技术、大事记)

5.1 国家《健康中国行动 —— 癌症预防和控制实施方案(2023-2030 年)》项目对环境肿瘤学科发展的影响

2024 年,是《健康中国行动 —— 癌症预防和控制实施方案(2023 - 2030 年)》发布后的首年,方案稳步推进,彰显出中国政府对癌症防治以及环境与肿瘤关系的高度重视。方案着重针对癌症高发区与高风险人群开展筛查,而这依赖环境科学、公共卫生学等多学科协同。在资源投入上,政府加大对癌症防治的资金支持,环境肿瘤学科科研经费预期大幅增长,专业人才培养规模也不断扩大,为学科发展注入活力。方案聚焦环境与健康,引导学科深入探究水、气、土壤等环境因素致瘤机制,开展风险评估研究。同时,积极推动多学科交叉融合,鼓励环境科学、肿瘤学等携手攻克难题。学科研究成果能迅速转化为政策依据,用于指导环境与癌症防治政策,还能加速应用于临床,造福患者。此外,方案普及防癌知识,吸引企业、公益组织等社会资源,提升学科社会影响力,全方位推动环境肿瘤学科发展。在学术交流层面,2024 年 11 月,2024 中国整合肿瘤学大会环境肿瘤学专委会学术年会在西安召开,以 “凝聚智慧、学科交叉、关注环境、防治肿瘤” 为主题,增进领域交流。2025 年 1 月,“2025 环境肿瘤学高质量发展研讨会暨中国抗癌协会环境肿瘤学专业委员会学术会议 (杭州站)” 成功举办,近 200 位多领域专家共同探讨环境科学与肿瘤预防及诊疗的前沿进展。在政府的引领与支持下,环境肿瘤学科发展活跃,未来将在癌症防治领域发挥更重要作用。

5.2 中国空气和地表水污染与癌症的共同暴露空间一致性

中国医学科学院基础医学研究所与北京协和医学院基础医学院流行病学和生物统计系的研究团队,针对人们日常生活中可能接触到的空气和地表水中的多种污染物展开研究。空气和地表水所处的环境并非一成不变,它们在不同区域流动,相互之间紧密关联,形成了一个极为复杂的网络。这个复杂网络给环境危害研究,尤其是现实世界中的癌症研究,带来了极大挑战。为深入探究,该团队开展了一项大规模研究,研究范围覆盖中国 30 个省份,涉及 3.77 亿人口,旨在评估空气和地表水污染对癌症的综合影响。研究期间,团队创新性地构建了一个空间评估系统,还制定了通用的分级量表,用以衡量共同污染的状况。同时,团队对空气和地表水环境在空间上相互连接,以及不同类型癌症易在环境较差地区聚集的假设进行了验证。研究结果显示,在受影响的癌症类型数量和癌症发病率方面,存在随着共同污染程度增加而变化的 “剂量 - 反应” 关系。研究人员估算,在 2016 年中国登记的新增癌症病例中,有 62847 例(占比 7.4%)可归因于空气和地表水污染,且这些额外病例中的大部分(占比 69.7%)出现在共同污染程度最高的地区。这项研究在环境与癌症关联研究领域取得了重大创新性突破。以往研究常将空气和地表水等环境因素孤立看待,而此次研究首次揭示了空气和地表水污染与癌症共同暴露在空间上具有一致性。该成果意义重大,有力地表明环境不能被看作相互独立的部分,为制定协同的环境治理和疾病预防政策提供了坚实依据,有望改变环境治理和癌症防控的传统思路,推动相关领域迈向新的发展阶段,为保障公众健康带来新的契机。

5.3 1990 年至 2019 年全球、区域和国家因颗粒物污染造成的癌症负担以及到 2050 年的预测:恶化还是改善?

中国医科大学第四临床学院与中国医科大学公共卫生学院环境卫生系团队,共同开展了一项针对全球、区域和国家层面,因颗粒物污染造成的癌症负担的研究。环境颗粒物污染被视作引发癌症的关键因素之一。在全球疾病负担研究2019 中,采用了 1990 - 2019 年的伤残调整生命年,以此分析由颗粒物污染引发的癌症情况,其中涵盖环境颗粒物污染以及固体燃料造成的家庭空气污染。研究过程中运用了联合点回归和贝叶斯年龄 - 时期 - 队列模型,分别对 1990 - 2019 年以及 2020 - 2050 年的相关趋势展开评估,同时还借助了前沿分析和健康不平等分析等统计模型。在过去 30 年里,从全球范围来看,由环境颗粒物污染导致的癌症伤残调整生命年呈上升态势,而由家庭空气污染和颗粒物污染导致的则有所减少。环境颗粒物污染引发的癌症伤残调整生命年与社会人口指数(SDI)呈正相关,相反,颗粒物污染和家庭空气污染导致的则与 SDI 呈负相关。通过前沿分析,明确了那些急需采取行动以减轻颗粒物污染导致的癌症问题的国家和地区。最终预测,在 2020 年至 2050 年期间,由环境颗粒物污染导致的癌症负担将会增加,而家庭空气污染和颗粒物污染导致的负担将会减轻。该研究针对全球不同地区和人群,就环境颗粒物污染、家庭空气污染和颗粒物污染导致的癌症负担进行了流行病学调查,不仅为全球因颗粒物污染导致的癌症负担提供了流行病学方面的认知,还能为政策制定以及研究方向给予指导。

5.4 全球饮用水中的三卤甲烷:膀胱癌的分布、风险评估和归因疾病负担

中国环境与健康教育部和环境保护部重点实验室携手国内四家科研机构团队,开展了一项关于全氟和多氟烷基物质(PFASs)与肝脏健康关联的研究。研究人员检查了 202 名肝癌患者和 30 名健康对照者的肝脏和胆汁组织,统计分析其中 PFASs 的分布情况,并计算出 PFASs 的肝胆转运效率(TB-L)。在检测的 21 种 PFASs 里,有 13 种在肝脏(中值:8.80 - 16.3 纳克 / 克)和胆汁(中值:11.03 - 14.26 纳克 / 毫升)样本中频繁被检测到。研究发现,肝脏中的 PFAS 浓度和年龄呈现正相关,年龄越大,体内 PFAS 水平越高。通过方差分析可知,性别和身体质量指数(BMI)也会对 PFASs 的分布产生重要影响。此次研究还首次发现,PFASs 的 TB-L 会随着碳链长度增加呈现 U 形变化趋势,而且健康对照者体内大多数 PFASs 的 TB-L 要高于肝癌患者(p < 0.05),这意味着肝损伤会干扰 PFASs 的转运。此外,PFASs 还与 γ- 谷氨酰转移酶(GGT)、丙氨酸氨基转移酶(ALT)和总胆红素(TB)等肝损伤生物标志物呈正相关(p < 0.05)。这是首次针对 PFASs 肝胆转运特征展开的研究,研究成果为理解 PFAS 积累与肝癌风险之间的联系提供关键线索,助力相关领域的进一步探索。

5.5 肿瘤微环境中的 CAF - 巨噬细胞串扰控制胃癌腹膜转移对免疫检查点阻断的反应

华南肿瘤国家重点实验室携手中国医学科学院胃肠道癌症精准诊疗研究团队,针对胃癌腹膜转移(GCPM)展开了一项重要研究。在临床上,GCPM 这种情况很常见,可是患者的预后状况却不太乐观。免疫检查点阻断(ICB)治疗虽然给这类患者带来了一丝希望,但现在急需搞清楚到底哪些患者对这种治疗有反应,以及为什么会出现耐药的情况。为了解决这些问题,研究团队开展了二期试验。他们对接受信迪利单抗联合化疗的 GCPM 患者样本,进行了单细胞测序分析。结果发现,GCPM 的肿瘤内环境里,存在着一种特别的免疫抑制模式。这种模式主要是由 SPP1 + 肿瘤相关巨噬细胞,以及 THBS2 + 基质癌相关成纤维细胞所构成的基质 - 髓样生态位主导的,而这恰恰就是导致 ICB 治疗出现耐药的关键原因。具体来说,THBS2+mCAFs 会通过补体 C3 - C3AR1 轴,让原本在组织里驻留的巨噬细胞,变成 SPP1+TAMs。不过研究也表明,只要把这个轴阻断,就能打破这种细胞之间不正常的相互干扰现象,进而提高 ICB 治疗的效果。这项研究在肿瘤内环境研究和治疗方面,实现了重大的创新性突破。过去对于 GCPM 的免疫治疗研究,一直没能清晰揭示 ICB 耐药背后的细胞机制。而这次的研究,首次为 GCPM 患者中与 ICB 耐药相关的细胞组成,绘制出了全新的分子图谱。这一成果意义非凡,它不但能帮助医生在选择治疗药物时,更好地确定哪些药物对患者可能更有效,还为提高免疫治疗效果提供了全新的思路。不再只是盲目尝试各种治疗方法,而是有了明确的方向去改善治疗效果,给 GCPM 患者的临床治疗带来了新的希望,有望改变目前 GCPM 治疗的困境,推动肿瘤治疗领域向前迈出一大步 。

5.6 深度学习在一项前瞻性随机对照研究中辅助检测食管癌及癌前病变

温州医科大学附属浙江省台州医院消化内科联合国内十家研究机构,成功开发出一套基于深度卷积神经网络的系统,专门用于检测食管癌以及癌前病变,也就是高危食管病变(HrELs)。这套系统的有效性已在临床试验中得到证实,相关试验已在中国临床试验注册中心注册,注册号为 ChiCTR2100044126。在2021 年4月到2022 年3月期间,浙江省台州医院挑选了 3117名 50 岁及以上的连续患者。这些患者按照区组随机化 1:1 的比例,被平均分成了实验组和对照组。实验组采用 CNN 辅助内镜检查,对照组则进行普通的无辅助内镜检查。研究的主要目标是对比两组对 HrEL 的检测率。结果显示,在意向治疗人群里,实验组 1556 人中有 28 人检测出 HrEL,检测率为 1.8%;而对照组 1561 人中只有 14 人检测出,检测率仅 0.9%。实验组的检测率达到了对照组的两倍,且这个差异非常显著,P 值为 0.029 。在实际操作过程中,也观察到了类似结果,实验组 1524 人中有 28 人(1.9%)检测出 HrEL,对照组 1534 人中有 13 人(0.9%),P 值为 0.021 。此外,这套系统检测 HrELs 的敏感性高达 89.7%,特异性为 98.5%,准确性达到 98.2%,并且在整个检测过程中,没有出现任何不良事件。这项研究在食管癌防治领域取得了重大创新性突破。以往食管癌防治主要依赖传统内镜检查,效率和准确性有限。而此次开发的基于“深度卷积神经网络”的系统,极大地提高了内镜检查时 HrEL 的检测率,且安全可靠。深度学习辅助技术首次在食管癌早期诊断方面展现出强大优势,为食管癌的早期发现提供了全新手段,不再局限于传统检查方式。未来,该系统有望成为食管癌筛查的关键工具,推动食管癌防治水平大幅提升,给广大食管癌高危人群带来新的希望,为医学在食管癌防治领域开辟新的发展方向。

5.7 内窥镜筛查对食管癌发病率和死亡率的有效性:中国食管癌内窥镜筛查随机试验的 9 年报告

北京大学肿瘤医院遗传学系致癌与转化研究重点实验室联合国内十家研究机构,针对能否通过内镜筛查降低食管鳞状细胞癌的发病率和死亡率展开研究。从 2012 年 1 月至 2016 年 9 月,研究团队在中国北方食管癌高发地区,针对 45 至 69 岁的常住居民,开展了一项社区整群随机对照试验。研究人员将 668 个村子按照 1:1 的比例,随机划分为筛查组和对照组。筛查组的居民接受卢戈氏染色内镜检查,而对照组则不进行该项检查。后续,研究团队通过意向治疗分析和符合方案分析这两种方式,对两组的食管癌发病率和死亡率进行对比。在符合方案分析时,还充分考虑了那些未按要求进行筛查的情况。最终,共有 33847 人纳入分析范围,其中筛查组有 17104 人,在这之中,有 15165 人(占比 88.7%)接受了筛查;对照组则有 16743 人。经过最长达 9 年的跟踪观察,数据显示,筛查组的食管癌发病率为每 10 万人年 60.9,而对照组为 72.5;筛查组的死亡率是每 10 万人年 29.7,对照组是 32.4。在意向治疗分析中,与对照组相比,筛查组的发病率降低了 19%(调整后的风险比为 0.81,95% 置信区间在 0.60 至 1.09 之间),死亡率降低了 18%(风险比是 0.82,95% 置信区间为 0.53 至 1.26);在符合方案分析里,发病率降低了 22%(aHR 为 0.78,95% 置信区间是 0.56 至 1.10),死亡率降低了 21%(aHR 为 0.79,95% 置信区间为 0.49 至 1.30)。历经 9 年的随访,这项研究明确表明,染色内镜筛查的确能够降低食管癌的发病率和死亡率。此研究取得了重大的创新性突破,以往针对食管癌防控多集中于治疗手段的改良,而该研究首次通过大规模的社区整群随机对照试验,证实了卢戈氏染色内镜筛查这一手段在降低食管癌发病率和死亡率方面的显著效果。这一成果为食管癌的防治开辟了新路径,不再局限于传统的防治思路,为食管癌高发地区的居民带来了福音。不过,后续还需进一步探索,建立更为有效的食管癌筛查及患者管理办法,从而让内镜筛查在食管癌防治中发挥更大的作用。

5.8 基于 EB 病毒血清学筛查项目对鼻咽癌死亡率的影响

中山大学癌症中心癌症预防部联合国内外多家研究机构,开展了一项旨在评估鼻咽癌(NPC)筛查能否降低人群中 NPC 特异性死亡率的研究。研究选取了中国四会和中山的 16 个镇,将其中 8 个镇设为筛查组,另外 8 个镇作为对照组。从 2008 年到 2015 年,研究纳入了年龄在 30 至 69 岁且没有 NPC 病史的居民。筛查组的居民接受血清 EBV 抗体测试,而对照组则不采取任何干预措施。整个研究一直持续随访到 2019 年。研究团队运用非参数检验和泊松回归模型对筛查效果进行分析,并且该试验已完成注册。最终研究数据显示,筛查组有 174943 人,对照组有 186263 人。两组的 NPC 发病率以及总体死亡率大致相当。在筛查组里,有 30.0% 的居民参与了测试,对于测试结果显示为高风险的人群,内镜检查和活检的依从率分别达到 65.9% 和 67.6%。尤为关键的是,筛查组的 NPC 死亡率相比对照组显著降低了 30%,特别是 50 岁及以上的人群,在筛查过程中获得的益处更为明显。经过长达 12 年的深入研究,结果明确表明,EBV 抗体测试在降低 NPC 死亡率方面成效显著。这项研究实现了重大的创新性突破,首次通过大规模的分组对照研究,证实了血清 EBV 抗体测试这一筛查手段能够有效降低鼻咽癌死亡率,为鼻咽癌的防治提供了全新且有效的策略。以往针对鼻咽癌死亡率降低的研究多集中在治疗手段改进上,而该研究另辟蹊径,从筛查层面入手,开辟了降低鼻咽癌死亡率的新路径,有望在鼻咽癌防治领域掀起新的变革,为更多鼻咽癌高危人群带来生存希望。

5.9 超急性排斥反应 —— 用于难治性癌症患者介入临床试验的溶瘤病毒

广西医科大学生物靶向治疗诊断学国家重点实验室携手国内多家研究机构,对溶瘤病毒(OV)疗法治疗恶性肿瘤展开研究,成果显示该疗法潜力巨大。然而,临床实践中存在静脉注射安全性欠佳以及自身免疫不足这两大难题。在此项研究中,研究人员成功研制出带有猪 α1,3GT 基因的重组新城疫病毒(NDV - GT),此病毒能够引发超急性排斥反应。临床前研究证实了其可行性。在创新的 CRISPR 介导的原发性肝细胞癌猴子模型里,静脉注射的 NDV - GT 展现出极为强大的根除肿瘤细胞的能力。尤为关键的是,一项针对 20 名复发 / 难治性转移性癌症患者的介入临床试验(世界卫生组织中国临床试验注册中心,ChiCTR2000031980)结果令人瞩目。该试验显示出高达 90.00% 的疾病控制率,且疗效持久,未出现严重不良事件,也未产生具有临床功能的中和抗体,充分表明在该条件下免疫原性极低,有力地证实了 NDV - GT 用于免疫病毒疗法切实可行。总体而言,研究结果表明静脉注射 NDV - GT 具有安全性高、效果显著的特点。这一成果为肿瘤治疗以及其他领域的 OV 疗法提供了创新性技术,在肿瘤治疗方面实现了重大突破,有望为众多肿瘤患者带来新的希望。

5.10 微生物代谢物通过调节泛癌 T 细胞干性增强免疫治疗效果

浙江大学医学院附属第二医院消化内科与省内多家研究团队共同开展研究,发现共生的约氏乳杆菌丰度和 ICB(免疫检查点阻断疗法)的反应性之间存在正相关关系。研究显示,补充约氏乳杆菌或者色氨酸衍生代谢物吲哚 - 3 - 丙酸,能够增强 CD8 T 细胞介导的 αPD - 1 免疫疗法的治疗效果。从作用机制来看,约氏乳杆菌会和产孢梭菌相互协作产生 IPA。IPA 能够通过增加 Tcf7 超增强子区域的 H3K27 乙酰化,调节 CD8 T 细胞的干性程序,促进祖细胞耗竭 CD8 T 细胞(T+++pex)的生成。值得一提的是,吲哚 - 3 - 丙酸在黑色素瘤、乳腺癌以及结直肠癌等多种癌症中,都能提升 ICB 的反应性。这项研究取得了重大的创新性突破。它首次确定了一条微生物代谢物 - 免疫调节途径,这是以往未曾被发现的全新作用机制。并且,研究还提出了一种基于微生物的佐剂方法,有望提高免疫疗法的反应性。这为肿瘤治疗带来了新的思路和潜在手段,不再仅仅局限于传统的治疗方式,为癌症患者提供了新的治疗希望,在肿瘤免疫治疗领域迈出了重要一步。

【主编】

李玉民     兰州大学第二医院

李兆申     海军军医大学第一附属医院

【副主编】

胡文彪     澳大利亚昆士兰科技大学

季加孚     北京大学肿瘤医院

乔   梁      悉尼大学医学院Westmead医学研究所

乔友林     中国医学科学院

汤朝晖     上海交通大学医学院附属新华医院

吴   泓      四川大学华西医院

徐   骁      浙江大学医学院附属第一医院

张学文     吉林大学第二医院

张亚玮     中国医学科学院肿瘤医院

周   俭     复旦大学附属中山医院

周文策     兰州大学第二医院

朱继业     北京大学人民医院

【编委】(按姓氏拼音排序)

曹林平     浙江大学医学院附属第一医院

陈   昊     兰州大学第二医院

陈天辉     浙江省肿瘤医院

陈耀龙     兰州大学基础医学院

陈应泰     中国医学科学院肿瘤医院

方驰华     南方医科大学珠江医院                   

甘   婷     澳大利亚昆士兰科技大学

顾艳梅     兰州大学第二临床医学院

何裕隆     中山大学附属第七医院

贺东强     兰州大学第二医院

胡建昆     四川大学华西医院

胡俊波     华中科技大学同济医学院附属同济医院

胡晓斌     兰州大学公共卫生学院

冀   明      首都医科大学附属北京友谊医院

荚卫东     中国科学技术大学附属第一医院

焦作义     兰州大学第二医院

景丽百合  兰州大学第二医院

康鹏德     四川大学华西医院

李   非     首都医科大学宣武医院

李   华     中山大学附属第三医院

李   涛     北京大学人民医院

李文涛    上海市胸科医院

李   想     兰州大学第二临床医学院

刘   蓓     兰州大学第一医院

刘昌军    湖南省人民医院

刘光琇    中国科学院西北生态环境资源研究院

刘宏斌    解放军联勤保障部940医院

刘   杰     兰州大学第二医院

刘   荣     中国人民解放军总医院

刘   涛     兰州大学第二医院

门同义    内蒙古医科大学附属医院

孟文勃    兰州大学第一医院

彭   健     中南大学湘雅医院

邵英梅    新疆医科大学第一附属医院                       

沈云志    天津大学中心医院

宋爱琳    兰州大学第二医院

宋飞雪    兰州大学第二医院

宋克薇    济宁市第一人民医院

孙维建    温州医科大学附属第一医院

孙   备    哈尔滨医科大学附属第一医院

田普训    西安交通大学第一附属医院

屠政良    浙江大学医学院附属第一医院

王保军    中国人民解放军总医院

王德贵    兰州大学基础医学院

王东升    兰州大学药学院

王   捷     中山大学附属第二医院

王俊玲    兰州大学公共卫生学院

王   艳     首都医科大学

王   正     兰州大学第二临床医学院

卫洪波    中山大学附属第三医院

吴   静     首都医科大学附属北京友谊医院

吴   健     浙江大学医学院附属第一医院

谢小冬    兰州大学基础医学院

杨克虎    兰州大学基础医学院

杨   扬     中山大学附属第三医院

张德奎    兰州大学第二医院

张   凡    兰州大学第二医院

张继军    山西医科大学第一医院

张   磊    兰州大学第一医院

张水军    郑州大学第一附属医院

张   毅    郑州大学第一附属医院

赵   军    兰州大学第二医院

郑   弘    天津市第一中心医院  

周彦明   厦门大学第一医院

朱   帆    武汉大学基础医学院

参考文献(向上滑动阅览)

[1] Yujie W, Siyi H, Mengdi C, Yi T, Qianru L, Nuopei T, Jiachen W, Tingting Z, Tianyi L, Yuanjie Z, Changfa X and Wanqing C. Comparative analysis of cancer statistics in China and the United States in 2024. Chin Med J (Engl). 2024; 137(24):3093-3100.

[2] Wenjie L and Wei W. Causal effects of exposure to ambient air pollution on cancer risk: Insights from genetic evidence. Sci Total Environ. 2023; 912:168843.

[3] Zhu M, Han Y, Mou Y, Meng X, Ji C, Zhu X, Yu C, Sun D, Yang L, Sun Q, Chen Y, Du H, Dai J, et al. Long-Term Fine Particulate Matter Exposure on Lung Cancer Incidence and Mortality in Chinese Nonsmokers. American journal of respiratory and critical care medicine. Am J Respir Crit Care Med. 2025

[4] Yingxin L, Zhimin H, Jing W, Ruijun X, Tingting L, Zihua Z, Likun L, Sihan L, Yi Z, Gongbo C, Ziquan L, Suli H, Xi C, et al. Long-term exposure to ambient fine particulate matter constituents and mortality from total and site-specific gastrointestinal cancer. Environ Res. 2023; 244:117927.

[5] Chen Y, Yang S, Lin J, Gu S, Wu L, Huang W, Yang J and Li M. Long-term exposure to ambient air pollutants and risk of prostate cancer: A prospective cohort study. Environmental research. 2025; 270:121020.

[6] Yutong S, Lei Y, Ning K, Ning W, Xi Z, Shuo L, Huichao L, Tao X and Jiafu J. Associations of incident female breast cancer with long-term exposure to PM(2.5) and its constituents: Findings from a prospective cohort study in Beijing, China. J Hazard Mater. 2024; 473:134614.

[7] Wu X, Zhang X, Yu X, Liang H, Tang S and Wang Y. Exploring the association between air pollution and the incidence of liver cancers. Ecotoxicology and environmental safety. 2025; 290:117437.

[8] Lei Y, Ning K, Ning W, Xi Z, Shuo L, Huichao L, Lili C, Tao X, Ziyu L, Jiafu J and Tong Z. Specifying the Associations between PM(2.5) Constituents and Gastrointestinal Cancer Incidence: Findings from a Prospective Cohort Study in Beijing, China. Environ Sci Technol. 2024; 58(49):21489-21498.

[9] Zi-Yi J, Kuangyu L, Gina W, Jin-Yi Z, Li-Na M, Xing L, Li-Ming L, Na H, Ming W, Jin-Kou Z and Zuo-Feng Z. Environmental tobacco smoking (ETS) and esophageal cancer: A population-based case-control study in Jiangsu Province, China. Int J Cancer. 2024; 156(8):1552-1562.

[10] Jie L, Ting G, Wenbiao H and Yumin L. Does ambient particulate matter 1 increase the risk of gastric cancer in the northwest of China? Int J Cancer. 2024; 156(1):104-113.

[11] Jingmei J, Luwen Z, Zixing W, Wentao G, Cuihong Y, Yubing S, Jing Z, Wei H, Yaoda H, Fang X, Wangyue C, Xiaobo G, Hairong L, et al. Spatial consistency of co-exposure to air and surface water pollution and cancer in China. Nat Commun. 2024; 15(1):7813.

[12] Tian W, Guo P, Li H and Zhang G. Probability risk assessment of soil PAH contamination premised on industrial brownfield development: a case from China. Environmental science and pollution research international. 2022; 29(1):1559-1572.

[13] Jun L, Jun-Zhuo L, Xi-Sheng T, Liang J, Ming Z and Fei Z. Pollution and source-specific risk analysis of potentially toxic metals in urban soils of an oasis-tourist city in northwest China. Environ Geochem Health. 2024; 46(2):55.

[14] Hua Z, Shengjie L, Aoxiang Z, Jian S, Yuanyuan Y, Kevin C and Lanjuan L. Hazard assessment of airborne and foodborne biodegradable polyhydroxyalkanoates microplastics and non-biodegradable polypropylene microplastics. Environ Int. 2025; 196:109311.

[15] Liu Y, Li Y, Dong S, Han L, Guo R, Fu Y, Zhang S and Chen J. The risk and impact of organophosphate esters on the development of female-specific cancers: Comparative analysis of patients with benign and malignant tumors. Journal of hazardous materials. 2021; 404:124020.

[16] Qian D, Yana B, Yongjun L, Shan Z, Minzhen W, Zhongge W, Jianyun S, Desheng Z, Chun Y, Li M, Yongbin L, Lizhen Z, Ruirui C, et al. Perfluoroalkyl substances exposure and the risk of breast cancer: A nested case-control study in Jinchang Cohort. Environ Res. 2024; 262:119909.

[17] Cao M, Xia C, Cao M, Yang F, Yan X, He S, Zhang S, Teng Y, Li Q, Tan N, Wang J and Chen W. Attributable liver cancer deaths and disability-adjusted life years in China and worldwide: profiles and changing trends. Cancer biology & medicine. 2024; 21(8):679-691.

[18] Fuping W, Yi H, Hui Z, Zhangting Z, Wenjia W, Fan C, Weimin Q, Junyi J, Liwei A, Yan M, Jie Y, Yang T, Yun Z, et al. Epstein-Barr virus infection upregulates extracellular OLFM4 to activate YAP signaling during gastric cancer progression. Nat Commun. 2024; 15(1):10543.

[19] Xinxin Y, Hongmei Z, He L, Maomao C, Fan Y, Siyi H, Shaoli Z, Yi T, Qianru L, Changfa X and Wanqing C. The current infection with Helicobacter pylori and association with upper gastrointestinal lesions and risk of upper gastrointestinal cancer: Insights from multicenter population-based cohort study. Int J Cancer. 2024; 155(7):1203-1211.

[20] Yi F, Chanchan H, Xiaoxu X, Yanfeng W, Chen C, Zhaokun W, Xueqiong H, Dongxia J, Shaodan H, Zhijian H and Fengqiong L. Effects of diets on risks of cancer and the mediating role of metabolites. Nat Commun. 2024; 15(1):5903.

[21] Huan T, Zedong J, Linlin S, Keqin T, Xiaomeng Y, Chengyuan H, Juan H, Xiaoyue L, Xiaofan J, Hong Y, Guangqi L, Yunuo Z, Qianlong K, et al. Dual impacts of serine/glycine-free diet in enhancing antitumor immunity and promoting evasion via PD-L1 lactylation. Cell Metab. 2024; 36(12):2493-2510.e9.

[22] Yaoyao L, Zeyu L, Jiaru C, Manfeng L, Chunqing C, Fei Z and Xueqiong Z. Personal history of irradiation and risk of breast cancer: A Mendelian randomisation study. J Glob Health. 2024; 14:04106.

[23] Wenyi D, Jiamin Y, Dan Z, Yizhi G, Yujie Z, Xin C and Xia H. Effects of ambient temperature, relative humidity and absolute humidity on risk of nasopharyngeal carcinoma in China. Int J Cancer. 2024; 155(4):646-653.

[24] Takahiro S, Yunlong Y, Xiaoting S, Sharon L, Sisi X, Ziheng G, Wenjing X, Masashi K, Hiroshi S, Kayoko H, Xu J, Masahito Y, Lili Q, et al. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature. 608(7922):421-428.

[25] Peng H, Wu X, Cui X, Liu S, Liang Y, Cai X, Shi M, Zhong R, Li C, Liu J, Wu D, Gao Z, Lu X, et al. Molecular and immune characterization of Chinese early-stage non-squamous non-small cell lung cancer: a multi-omics cohort study. Translational lung cancer research. 2024; 13(4):763-784.

[26] Hill W, Lim E, Weeden C, Lee C, Augustine M, Chen K, Kuan F, Marongiu F, Evans E, Moore D, Rodrigues F, Pich O, Bakker B, et al. Lung adenocarcinoma promotion by air pollutants. Nature. 2023; 616(7955):159-167.

[27] Dong X, Zhu Q, Yuan C, Wang Y, Ma X, Shi X, Chen W, Dong Z, Chen L, Shen Q, Xu H, Ding Y, Gong W, et al. Associations of Intrapancreatic Fat Deposition With Incident Diseases of the Exocrine and Endocrine Pancreas: A UK Biobank Prospective Cohort Study. The American journal of gastroenterology. 2024; 119(6):1158-1166.

[28] Mengmeng L, Su-Mei C, Niki D, Lan W, Ji-Bin L and Jun Y. Association of Metabolic Syndrome With Risk of Lung Cancer: A Population-Based Prospective Cohort Study. Chest. 2023; 165(1):213-223.

[29] Jiang F, Zhao J, Sun J, Chen W, Zhao Y, Zhou S, Yuan S, Timofeeva M, Law P, Larsson S, Chen D, Houlston R, Dunlop M, et al. Impact of ambient air pollution on colorectal cancer risk and survival: insights from a prospective cohort and epigenetic Mendelian randomization study. EBioMedicine. 2024; 103:105126.

[30] Dou X, Dan C, Zhang D, Zhou H, He R, Zhou G, Zhu Y, Fu N, Niu B, Xu S, Liao Y, Luo Z, Yang L, et al. Genomic mutation patterns and prognostic value in de novo and secondary acute myeloid leukemia: A multicenter study from China. International journal of cancer. 2024; 155(12):2253-2264.

[31] Yiling W, Yuxin W, Qianqian C, Yongyi H, Duanyang Z, Wenhan Y, Lin Y, Juan X, Kaiping G, Liyuan S and Rihong Z. Downregulation of tRNA methyltransferase FTSJ1 by PM2.5 promotes glycolysis and malignancy of NSCLC via facilitating PGK1 expression and translation. Cell Death Dis. 2024; 15(12):911.

[32] Yi W, Xuling S, Qianqian W, Likun Z, Yaling Y, Yiwei Z and Zhiyan L. Bisphenol A exposure enhances proliferation and tumorigenesis of papillary thyroid carcinoma through ROS generation and activation of NOX4 signaling pathways. Ecotoxicol Environ Saf. 2025; 292:117946.

[33] Ling Y, Christiana K, Julia S, Pang Y, Yu G, Jun L, Robin G W, Yiping C, Hannah F, Daniel A, Canqing Y, Jianrong J, Alexander J M, et al. Prospective evaluation of the relevance of Epstein-Barr virus antibodies for early detection of nasopharyngeal carcinoma in Chinese adults. Int J Epidemiol. 2024; 53(4):dyae098.

[34] Wen-Jie C, Xia Y, Yu-Qiang L, Ruth M P, Wei L, Shang-Hang X, Zhi-Cong W, Xue-Qi L, Yu-Ying F, Biao-Hua W, Kuang-Rong W, Hui-Lan R, Qi-Hong H, et al. Impact of an Epstein-Barr Virus Serology-Based Screening Program on Nasopharyngeal Carcinoma Mortality: A Cluster-Randomized Controlled Trial. J Clin Oncol. 2024; 43(1):22-31.

[35] Pan K, Li W, Zhang L, Liu W, Ma J, Zhang Y, Ulm K, Wang J, Zhang L, Bajbouj M, Zhang L, Li M, Vieth M, et al. Gastric cancer prevention by community eradication of Helicobacter pylori: a cluster-randomized controlled trial. Nature medicine. 2024; 30(11):3250-3260.

[36] Tian J, Zhang M, Zhang F, Gao K, Lu Z, Cai Y, Chen C, Ning C, Li Y, Qian S, Bai H, Liu Y, Zhang H, et al. Developing an optimal stratification model for colorectal cancer screening and reducing racial disparities in multi-center population-based studies. Genome medicine. 2024; 16(1):81.

[37] Wen-Cai Z, Fei L, Qian-Ren-Shun Q, Yu-Peng W, Zhi-Bin K, Shao-Hao C, Dong-Ning C, Qing-Shui Z, Yong W, Xue-Yi X and Ning X. Environmental explanation of prostate cancer progression based on the comprehensive analysis of polychlorinated biphenyls. Sci Total Environ. 2024; 948:174870.

[38] Binhua D, Zhen L, Tianjie Y, Junfeng W, Yan Z, Xunyuan T, Juntao W, Shaomei L, Hongning C, Huan C, Xiaoli C, Xinxin H, Zheng Z, et al. Development, validation, and clinical application of a machine learning model for risk stratification and management of cervical cancer screening based on full-genotyping hrHPV test (SMART-HPV): a modelling study. Lancet Reg Health West Pac. 2025; 55:101480.

[39] Li J, Song X, Ni Y, Zhu S, Chen W, Zhao Y, Yi J, Xia L, Nie S, Shang Q and Liu L. Time trends of 16 modifiable risk factors on the burden of major cancers among the Chinese population. International journal of cancer. 2024; 154(8):1443-1454.

[40] Xin J, Gu D, Li S, Qian S, Cheng Y, Shao W, Ben S, Chen S, Zhu L, Jin M, Chen K, Hu Z, Zhang Z, et al. Integration of pathologic characteristics, genetic risk and lifestyle exposure for colorectal cancer survival assessment. Nature communications. 2024; 15(1):3042.

[41] Deng J, Zhou Y, Dai W, Chen H, Zhou C, Zhu C, Ma X, Pan S, Cui Y, Xu J, Zhao E, Wang M, Chen J, et al. Noninvasive predictive models based on lifestyle analysis and risk factors for early-onset colorectal cancer. Journal of gastroenterology and hepatology. 2023; 38(10):1768-1777.

[42] Peng Y, Wang P, Du H, Liu F, Wang X, Si C, Gong J, Zhou H, Chen K and Song F. Cardiovascular health, polygenic risk score, and cancer risk: a prospective cohort study. The American journal of clinical nutrition. 2024; 120(4):785-793.

[43] Gao R, Yuan X, Ma Y, Wei T, Johnston L, Shao Y, Lv W, Zhu T, Zhang Y, Zheng J, Chen G, Sun J, Wang Y, et al. Harnessing TME depicted by histological images to improve cancer prognosis through a deep learning system. Cell reports Medicine. 2024; 5(5):101536.

[44] Wanli M, Lin X, Yixuan W, Shen C, Daochuan L, Xiaoyu H, Ruoxi L, Xiaoxiao Z, Ningning C, Yuan J, Jiao L, Chuanhai L, Kunming Z, et al. piR-27222 mediates PM(2.5)-induced lung cancer by resisting cell PANoptosis through the WTAP/m(6)A axis. Environ Int. 2024; 190:108928.

[45] Xu H, Wei Y, Bao Q, Wang Y, Li X, Huang D, Liu F, Li Y, Zhao Y, Zhao X, Xiao Q, Gao S, Chen R, et al. Dietary protein intake and PM on ovarian cancer survival: A prospective cohort study. Ecotoxicology and environmental safety. 2025; 291:117798.

[46] Shi Z, Li M, Zhang C, Li H, Zhang Y, Zhang L, Li X, Li L, Wang X, Fu X, Sun Z, Zhang X, Tian L, et al. Faecalibacterium prausnitziiButyrate-producing suppresses natural killer/T-cell lymphoma by dampening the JAK-STAT pathway. Gut. 2025; 74(4):557-570.

[47] Xu Z, Meng S, Xu R, Ma D, Dzakah E, Zheng H, Yao T, Ni C and Zhao B. Establishment of novel colorectal cancer organoid model based on tumor microenvironment analysis. Life medicine. 2024; 3(4):lnae027.

[48] Zhi Y, Wang Q, Zi M, Zhang S, Ge J, Liu K, Lu L, Fan C, Yan Q, Shi L, Chen P, Fan S, Liao Q, et al. Spatial Transcriptomic and Metabolomic Landscapes of Oral Submucous Fibrosis-Derived Oral Squamous Cell Carcinoma and its Tumor Microenvironment. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2024; 11(12):e2306515.

[49] Bernicker EH. Environmental Oncology Theory and Impact. Springer Cham; 2023.

[50] Palliyaguru N, Palliyaguru DL, Liyanage S. Geographical Mapping of Biological and Environmental Risk Factors of Colorectal Cancer in the United States. JCO Global Oncology. 2024;35(6):635-44.

[51] Ige O, Ratnayake IP, Martinez J, Pepper S, Alsup A, McGuirk M, et al. A Regional Study to Evaluate the Impact of Coal-fired Power Plants on Lung Cancer Incident Rates. Preventive oncology & epidemiology. 2024;2(1):2348469.

[52] Sahyoun L, Chen K, Tsay C, Chen G, Protiva P. Clinical and socioeconomic determinants of survival in biliary tract adenocarcinomas. World Journal of Gastrointestinal Oncology 2024;16(4):1374-1383.

[53] Mavromanoli AC, Sikorski C, Behzad D, Manji K, Kreatsoulas C. Adverse childhood experiences and cancer: A systematic review and meta-analysis. Journal of Clinical Oncology. 2024.117:105088.

[54] VoPham T, White AJ, Jones RR. Geospatial Science for the Environmental Epidemiology of Cancer in the Exposome Era. Cancer Epidemiology, Biomarkers & Prevention. 2024; 33:451 - 460.

[55] Su H, Chen L, Wu J, et al. Proteogenomic characterization reveals tumorigenesis and progression of lung cancer manifested as subsolid nodules. Nat Commun. 2025;16(1):2414.

[56] Zhang M, Mo J, Huang W-S, Bao Y-R, Luo X, Yuan L. The ovarian cancer-associated microbiome contributes to the tumor’s inflammatory microenvironment. Frontiers in Cellular and Infection Microbiology. 2024;14:1440742.

[57] Yang K, Wang S, Ding Z, Zhang K, Zhu W, Wang H, et al. Unveiling microbial dynamics in lung adenocarcinoma and adjacent nontumor tissues: insights from nicotine exposure and diverse clinical stages via nanopore sequencing technology. Frontiers in Cellular and Infection Microbiology. 2024; 14:1397989.

[58] Medina-Ceballos E, Machado I, Giner F, Blázquez-Bujeda Á, Espino M, Navarro S, et al. Immunological Tumor Microenvironment of Solitary Fibrous Tumors—Associating Immune Infiltrate with Variables of Prognostic Significance. Cancers 2024; 16.

[59] Nascimento Júnior JXD, Gomes JDC, Imbroisi Filho R, et al. Dietary caloric input and tumor growth accelerate senescence and modulate liver and adipose tissue crosstalk. Commun Biol. 2025;8(1):18.

[60] Yavari M, Torpey J, Sabatier M, Carmona A, Szylo KJ, Flores M, et al. Abstract 430: Precision diet and lipid modulating agents to induce lipid oxidation in breast cancer. Cancer Research 2024.

[61] Encarnação CC, Faria GM, Franco VA, Botelho LGX, Moraes JA, Renovato-Martins M. Interconnections within the tumor microenvironment: extracellular vesicles as critical players of metabolic reprogramming in tumor cells. Journal of Cancer Metastasis and Treatment 2024.

[62] Nakamura K, Tsukasaki M, Tsunematsu T, Yan M, Ando Y, Huynh NC, et al. The periosteum provides a stromal defence against cancer invasion into the bone. Nature 2024; 634(8033):474-481.

[63] Jiang Y, Li Y. Nutrition Intervention and Microbiome Modulation in the Management of Breast Cancer. Nutrients. 2024;16(16):2644.

[64] Han Y, Park JM, Jeong M, Yoo JH, Kim WH, Shin SP, et al. Dietary, non-microbial intervention to prevent Helicobacter pylori-associated gastric diseases. Annals of translational medicine 2015; 3 9:122.

[65] Madrigal-Matute J, Bañón Escandell S. Colorectal Cancer and Microbiota Modulation for Clinical Use. A Systematic Review. Nutrition and Cancer 2021; 75:123 - 139.

[66] Carlander C, Borgfeldt C, Hammarstedt Nordenvall L. Catch up-HPV-vaccination av män [Catch-up vaccination prevents HPV infection and related precancers when given up to age 26]. Lakartidningen. 2025;122:24097.

[67] Kim B-J, Kim S-H. Prediction of inherited genomic susceptibility to 20 common cancer types by a supervised machine-learning method. Proceedings of the National Academy of Sciences of the United States of America 2018; 115:1322 - 1327.

[68] Guan S, Xu Z, Yang T, Zhang Y, Zheng Y, Chen T, et al. Identifying potential targets for preventing cancer progression through the PLA2G1B recombinant protein using bioinformatics and machine learning methods. Int J Biol Macromol 2024; 276(Pt 1):133918.

[69] Rayapati D, McGlynn KA, Groopman JD, Kim AK. Environmental exposures and the risk of hepatocellular carcinoma. Hepatol Commun. 2025;9(2):e0627.

[70] Decker A, Quante M. [Esophageal cancer: new developments in prevention and therapy]. Deutsche medizinische Wochenschrift 2024; 149 22:1329-1334.

[71] Rumano RP, Hery CM, Elsaid MI, Washington CM, Degraffinreid CR, Paskett ED. Abstract A151: Examining the influence of health insurance, socioeconomic factors, and rurality on breast cancer screening behaviors in Ohio. Cancer Epidemiology, Biomarkers & Prevention 2024.

[72] Uldbjerg CS, Rantakokko P, Lim YH, et al. Prenatal exposure to organochlorine pesticides and polychlorinated biphenyls and risk of testicular germ cell cancer later in life. Sci Total Environ. Published online March 7, 2025.

[73] Christou CD, Tsoulfas G. Challenges and opportunities in the application of artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2021; 27(37):6191-6223.

[74] Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med 2019; 25(4):679-689.

[75] Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin 2021; 71(4):333-358.

[76] Lossow K, Schwarz M, Kipp AP. Are trace element concentrations suitable biomarkers for the diagnosis of cancer? Redox Biol 2021; 42:101900.

[77] Singh AK, Mishra AK. Revolutionizing Brain Tumor Diagnosis: Harnessing Convolutional Neural Networks for Enhanced Prediction and Classification. 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT) 2024; 5:245-250.

[78] Ríos Quinte RJ, Ortiz Osorio AB, Toaquiza Toapanta CD, Landi Faican EA, García Toala JA. New advances in artificial intelligence for the diagnosis and treatment of colorectal cancer: a literature review. Sapienza: International Journal of Interdisciplinary Studies 2024.

[79] Allen TA. The Role of Circulating Tumor Cells as a Liquid Biopsy for Cancer: Advances, Biology, Technical Challenges, and Clinical Relevance. Cancers 2024; 16.

[80] Zhang C, Dong H-K, Gao J-M, Zeng Q-Q, Qiu J-T, Wang J-J. Advances in the diagnosis and treatment of MET-variant digestive tract tumors. World Journal of Gastrointestinal Oncology 2024; 16:4338 - 4353.

[81] Kanarek N, Petrova B, Sabatini DM. Dietary modifications for enhanced cancer therapy. Nature 2020; 579(7800):507-517.

[82] 34. Wang M, Lan T, Williams AM, Ehrhardt MJ, Lanctot JQ, Jiang S, et al. Plant Foods Intake and Risk of Premature Aging in Adult Survivors of Childhood Cancer in the St Jude Lifetime Cohort (SJLIFE). J Clin Oncol 2024; 42(13):1553-1562.

[83] Amonoo HL, El-Jawahri A, Deary EC, Traeger LN, Cutler CS, Antin JA, et al. Yin and Yang of Psychological Health in the Cancer Experience: Does Positive Psychology Have a Role? J Clin Oncol 2022; 40(22):2402-2407.

[84] Cao A, Cartmel B, Li FY, Gottlieb LT, Harrigan M, Ligibel JA, et al. Effect of Exercise on Chemotherapy-Induced Peripheral Neuropathy Among Patients Treated for Ovarian Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open 2023; 6(8):e2326463.

[85] Sanft T, Harrigan M, McGowan C, Cartmel B, Zupa M, Li FY, et al. Randomized Trial of Exercise and Nutrition on Chemotherapy Completion and Pathologic Complete Response in Women With Breast Cancer: The Lifestyle, Exercise, and Nutrition Early After Diagnosis Study. J Clin Oncol 2023; 41(34):5285-5295.

[86] Xia W, Tan Y, Liu Y, Xie N, Zhu H. Prospect of extracellular vesicles in tumor immunotherapy. Front Immunol. 2025;16:1525052.

[87] Wang D, Han X, Liu H-L. The role and research progress of tumor-associated macrophages in cervical cancer. American journal of cancer research 2024; 14 12:5999-6011.

[88] Li H, Cheng S, Zhai J, et al. Platinum based theranostics nanoplatforms for antitumor applications. J Mater Chem B. 2023;11(35):8387-8403.

[89] Xiang Y, Chen Q, Nan Y, Liu M, Xiao Z, Yang Y, et al. Nitric Oxide‐Based Nanomedicines for Conquering TME Fortress: Say “NO” to Insufficient Tumor Treatment. Advanced Functional Materials 2023; 34.

[90] Liu Y, Wang D, Luan Y, et al. The application of organoids in colorectal diseases. Front Pharmacol. 2024;15:1412489.

[91] Tofani LB, Abriata JP, Luiz MT, Marchetti JM, Swiech K. Establishment and characterization of an in vitro 3D ovarian cancer model for drug screening assays. Biotechnology Progress 2020; 36.

[92] Ahmed Z, Chaudhary F, Agrawal DK. Epidemiology, Mechanisms and Prevention in the Etiology of Environmental Factor-Induced Cardiovascular Diseases. Journal of environmental science and public health 2024; 8 2:59-69.

[93] Zhang A, Luo X, Li Y, Yan L, Lai X, Yang Q, et al. Epigenetic changes driven by environmental pollutants in lung carcinogenesis: a comprehensive review. Frontiers in Public Health 2024; 12.

[94] Neja SA, Dashwood WM, Dashwood RH, Rajendran P. Histone Acyl Code in Precision Oncology: Mechanistic Insights from Dietary and Metabolic Factors. Nutrients 2024; 16.

[95] Pariollaud M, Ibrahim LH, Irizarry E, Mello RM, Chan AB, Altman BJ, et al. Circadian disruption enhances HSF1 signaling and tumorigenesis in Kras-driven lung cancer. Sci Adv 2022; 8(39):eabo1123.

[96] Swanton C, Bernard E, Abbosh C, André F, Auwerx J, Balmain A, et al. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024; 187(7):1589-1616.

[97] Hasegawa S, Shoji Y, Kato M, Elzawahry A, Nagai M, Gi M, et al. Whole Genome Sequencing Analysis of Model Organisms Elucidates the Association Between Environmental Factors and Human Cancer Development. International Journal of Molecular Sciences 2024; 25.

[98] Anvari S, Osei E, Maftoon N. Interactions of platelets with circulating tumor cells contribute to cancer metastasis. Sci Rep 2021; 11(1):15477.

[99] Maas RR, Soukup K, Fournier N, Massara M, Galland S, Kornete M, et al. The local microenvironment drives activation of neutrophils in human brain tumors. Cell 2023; 186(21):4546-4566.e4527.

[100] Montégut L, López-Otín C, Kroemer G. Aging and cancer. Mol Cancer 2024; 23(1):106.

[101] Liu J, Gan T, Hu W, Li Y. Current status and perspectives in environmental oncology. Chronic Diseases and Translational Medicine 2024; 10:293 - 301.

[102] McAllister K, Mechanic LE, Amos C, Aschard H, Blair IA, Chatterjee N, et al. Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases. Am J Epidemiol 2017; 186(7):753-761.

[103] Carbone M, Arron ST, Beutler B, Bononi A, Cavenee W, Cleaver JE, et al. Tumour predisposition and cancer syndromes as models to study gene-environment interactions. Nat Rev Cancer 2020; 20(9):533-549.

[104] Liu J, Huang B, Ding F, Li Y. Environment factors, DNA methylation, and cancer. Environ Geochem Health 2023; 45(11):7543-7568.

[105] Ginsburg O, Ashton-Prolla P, Cantor A, Mariosa D, Brennan P. The role of genomics in global cancer prevention. Nat Rev Clin Oncol 2021; 18(2):116-128.

[106] Ojha RP, Offutt-Powell TN, Evans EL, Singh KP. Correlation coefficients in ecologic studies of environment and cancer. Arch Environ Occup Health 2011; 66(4):241-244.

[107] Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health 2017; 16(1):94.

[108] Atwood ST, Lunn RM, Garner SC, Jahnke GD. New Perspectives for Cancer Hazard Evaluation by the Report on Carcinogens: A Case Study Using Read-Across Methods in the Evaluation of Haloacetic Acids Found as Water Disinfection By-Products. Environ Health Perspect 2019; 127(12):125003.

[109] Rashid T, Bennett JE, Muller DC, Cross AJ, Pearson-Stuttard J, Asaria P, et al. Mortality from leading cancers in districts of England from 2002 to 2019: a population-based, spatiotemporal study. Lancet Oncol 2024; 25(1):86-98.

[110] Liao W, Coupland CAC, Burchardt J, Baldwin DR, Gleeson FV, Hippisley-Cox J. Predicting the future risk of lung cancer: development, and internal and external validation of the CanPredict (lung) model in 19·67 million people and evaluation of model performance against seven other risk prediction models. Lancet Respir Med 2023; 11(8):685-697.

[111] Fitzgerald RC, Antoniou AC, Fruk L, Rosenfeld N. The future of early cancer detection. Nature Medicine 2022.

[112] Honda GS, Pearce RG, Pham LL, et al. Using the concordance of in vitro and in vivo data to evaluate extrapolation assumptions. PLoS One. 2019;14(5):e0217564.

[113] Neveu V, Nicolas G, Salek RM, Wishart DS, Scalbert A. Exposome-Explorer 2.0: an update incorporating candidate dietary biomarkers and dietary associations with cancer risk. Nucleic Acids Res. 2020;48(D1):D908-D912.

[114] Vermeulen R, Schymanski EL, Barabási AL, Miller GW. The exposome and health: Where chemistry meets biology. Science. 2020;367(6476):392-396.

[115] Dey MK, Iftesum M, Devireddy R, Gartia MR. New technologies and reagents in lateral flow assay (LFA) designs for enhancing accuracy and sensitivity. Anal Methods. 2023;15(35):4351-4376.

[116] Raska P, Su Z, Robert NJ. Pan-tumor circulating tumor DNA testing in the community oncology setting. Journal of Clinical Oncology 2024.

[117] Sharoev TA. Innovative technologies in pediatric surgical oncology: a 3D4K operating exoscope in open abdominal surgery. Pediatric Hematology/Oncology and Immunopathology 2024.

[118] Shui L, Ren H, Yang X, Li J, Chen Z, Yi C, et al. The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology. Frontiers in Oncology 2021; 10.

[119] Kehl KL, Mazor T, Trukhanov P, Lindsay J, Galvin MR, Farhat KS, et al. Identifying Oncology Clinical Trial Candidates Using Artificial Intelligence Predictions of Treatment Change: A Pilot Implementation Study. JCO precision oncology 2024; 8:e2300507.

[120] Yildiz F, Oksuzoglu B. Teleoncology or telemedicine for oncology patients during the COVID-19 pandemic: the new normal for breast cancer survivors?. Future Oncol. 2020;16(28):2191-2195.

[121] Global Burden of Disease 2019 Cancer Collaboration; Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, et al. Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. JAMA Oncology.2022;8(3):420-444..

[122] Wu S, Zhu W, Thompson P, Hannun YA. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat Commun. 2018;9(1):3490.

[123] Gotay C, Dummer T, Spinelli J. Cancer risk: prevention is crucial. Science. 2015;347(6223):728.

[124] Ahmed M, Rauf M, Mukhtar Z, Saeed NA. Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. Environ Sci Pollut Res Int. 2017;24(35):26983-26987.

[125] McGrady ME, Willard VW, Williams AM, Brinkman TM. Psychological Outcomes in Adolescent and Young Adult Cancer Survivors. J Clin Oncol. 2024;42(6):707-716.

[126] The Lancet Oncology. Climate crisis and cancer: the need for urgent action. Lancet Oncol. 2021;22(10):1341.

[127] Nature's 10: ten people (and one non-human) who helped shape science in 2023. Nature. 2023;624(7992):495.

[128] Denny L, Kataria I, Huang L, Schmeler KM. Cervical cancer kills 300,000 people a year - here's how to speed up its elimination. Nature. 2024;626(7997):30-32.

[129] McNulty K, Nahar K. Geospatial Modelling Predicts Agricultural Microplastic Hotspots from Biosolid Application Risks. Agronomy 2024.

[130] Zha H, Li S, Zhuge A, et al. Hazard assessment of airborne and foodborne biodegradable polyhydroxyalkanoates microplastics and non-biodegradable polypropylene microplastics. Environ Int. 2025;196:109311.

[131] Fan Y, Liu S, Gao EY, Guo R, Dong G, Li Y, et al. The LMIT: Light-mediated minimally-invasive theranostics in oncology. Theranostics 2024; 14:341 - 362.

[132] Wang H, Ji Z, Liu R, Hu H, Sun W. Bibliometric Analysis of Research Status, Hotspots, and Prospects of UV/PS for Environmental Pollutant Removal. Water 2024.

[133] Zhang L. Environmental hotspots, frontiers and analytical framework of Blue Carbon research: a quantitative analysis of knowledge map based on CiteSpace. Frontiers in Environmental Science 2024.

[134] Du Z, Ruan Y, Chen J, Fang J, Xiao S, Shi Y, et al. Global Trends and Hotspots in Research on the Health Risks of Organophosphate Flame Retardants: A Bibliometric and Visual Analysis. Toxics 2024; 12.

[135] Iacobucci G. Whole genome sequencing can help guide cancer care, study reports. BMJ. 2024;384:q65.

[136] O'Leary K. Raising the bar for AI in cancer screening. Nature Medicine 2023.

[137] Mbemi A, Khanna S, Njiki S, Yedjou CG, Tchounwou PB. Impact of Gene-Environment Interactions on Cancer Development. Int J Environ Res Public Health. 2020;17(21):8089.

[138] López J, Blanco S. Exploring the role of ribosomal RNA modifications in cancer. Curr Opin Genet Dev. 2024;86:102204.

[139] Falvo DJ, Grimont A, Zumbo P, et al. A reversible epigenetic memory of inflammatory injury controls lineage plasticity and tumor initiation in the mouse pancreas. Dev Cell. 2023;58(24):2959-2973.e7.

[140] Schrag D, Beer TM, McDonnell CH 3rd, et al. Blood-based tests for multicancer early detection (PATHFINDER): a prospective cohort study. Lancet. 2023;402(10409):1251-1260.

[141] Zhou H, Liu F, Xu J, et al. Relationships of sarcopenia symptoms and dietary patterns with lung cancer risk: a prospective cohort study. Food Funct. Published online February 27, 2025.

[142] Spano G, Giannico V, Elia M, Bosco A, Lafortezza R, Sanesi G. Human Health–Environment Interaction Science: An emerging research paradigm. Science of the Total Environment 2019.

[143] Tan M, Song B, Zhao X, Du J. The role and mechanism of compressive stress in tumor. Frontiers in Oncology 2024; 14.

[144] Ding M. Frontier Research on Miniature Sensor Technology in Precision Detection Field. International Journal of Frontiers in Engineering Technology 2024.

[145] Jacob EM, Huang J, Chen M. Lipid nanoparticle-based mRNA vaccines: a new frontier in precision oncology. Precision Clinical Medicine 2024; 7.

[146] Dong K, Li J, Chen W, Tang Q, Wu Q, Zhong P. The Heterogeneous Impact of Economic and Environmental Policy Uncertainty on the Digital Economy: Fresh Evidence Based on the Bilateral Stochastic Frontier Model. Polish Journal of Environmental Studies 2024.

[147] Sosinsky A, Ambrose J, Cross W, et al. Insights for precision oncology from the integration of genomic and clinical data of 13,880 tumors from the 100,000 Genomes Cancer Programme. Nat Med. 2024;30(1):279-289.

[148] Trehearne A. Genetics, lifestyle and environment. UK Biobank is an open access resource following the lives of 500,000 participants to improve the health of future generations. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2016;59(3):361-367.

[149] Tran L, Nguyen LHD, Nguyen HT-H, Nguyen D, Tang H-S, Giang H, et al. Analytical and clinical validation of a circulating tumor DNA–based assay for multicancer early detection. Journal of Clinical Oncology 2024.

[150] Kotecki N, Martins-Branco D, Nader-Marta G, Gombos A, Barthélémy P, Goncalves A, et al. Abstract CT202: CSFctDNA as a surrogate for tumor tissue DNA in BC pts with CNS metastases: First results from the Brainstorm program (Oncodistinct 006). Cancer Research 2024.

[151] ian P, Pan Z, Zeng X, Zhu Y. Who takes the lead: Synergistic emission reduction effects of proactive government and efficient market in atmospheric pollution mitigation. J Environ Manage. 2024;371:123001.

[152] He S, Wang M. [Research progress on genome-guided precision oncology and development ideas of antitumor Chinese medicine]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica 2023; 48 6:1421-1430.

[153] Tan WY, Nagabhyrava S, Ang-Olson O, Das P, Ladel L, Sailo BL, et al. Translation of Epigenetics in Cell-Free DNA Liquid Biopsy Technology and Precision Oncology. Current Issues in Molecular Biology 2024; 46:6533 - 6565.

[154] Ma C, Zhou MY, Li XL. Practice Education of Environmental Engineering Based on Occupational Skill Improvement. In; 2015.

[155] Wang Z, Xia Q, Meng P, Lu C, Yang H, Feng XL, et al. Social determinants of health and cancer screening in China. Lancet Reg Health West Pac 2024; 44:101043.

[156] Jiang J, Zhang L, Wang Z, Gu W, Yang C, Shen Y, et al. Spatial consistency of co-exposure to air and surface water pollution and cancer in China. Nat Commun 2024; 15(1):7813.

[157] Chen J, Cui Y, Deng Y, Xiang Y, Chen J, Wang Y, et al. Global, regional, and national burden of cancers attributable to particulate matter pollution from 1990 to 2019 and projection to 2050: Worsening or improving? J Hazard Mater 2024; 477:135319.

[158] Shi Y, Xia W, Liu H, Liu J, Cao S, Fang X, et al. Trihalomethanes in global drinking water: Distributions, risk assessments, and attributable disease burden of bladder cancer. J Hazard Mater 2024; 469:133760.

[159] Li Y, Zheng Y, Huang J, Nie RC, Wu QN, Zuo Z, et al. CAF-macrophage crosstalk in tumour microenvironments governs the response to immune checkpoint blockade in gastric cancer peritoneal metastases. Gut 2025; 74(3):350-363.

[160] Li SW, Zhang LH, Cai Y, Zhou XB, Fu XY, Song YQ, et al. Deep learning assists detection of esophageal cancer and precursor lesions in a prospective, randomized controlled study. Sci Transl Med 2024; 16(743):eadk5395.

[161] Liu M, Yang W, Guo C, Liu Z, Li F, Liu A, et al. Effectiveness of Endoscopic Screening on Esophageal Cancer Incidence and Mortality: A 9-Year Report of the Endoscopic Screening for Esophageal Cancer in China (ESECC) Randomized Trial. J Clin Oncol 2024; 42(14):1655-1664.

[162] Chen WJ, Yu X, Lu YQ, Pfeiffer RM, Ling W, Xie SH, et al. Impact of an Epstein-Barr Virus Serology-Based Screening Program on Nasopharyngeal Carcinoma Mortality: A Cluster-Randomized Controlled Trial. J Clin Oncol 2025; 43(1):22-31.

[163] Zhong L, Gan L, Wang B, Wu T, Yao F, Gong W, et al. Hyperacute rejection-engineered oncolytic virus for interventional clinical trial in refractory cancer patients. Cell 2025; 188(4):1119-1136.e1123.

[164] Jia D, Wang Q, Qi Y, Jiang Y, He J, Lin Y, et al. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell 2024; 187(7):1651-1665.e1621.

技术支持:乐问医学

 

版权所有:中国抗癌协会 | 技术支持:北方网 | 联系我们
津ICP备09011441号