设为首页 | 加入收藏 | English
首 页   关于协会  协会动态  会员之声  学术交流  科普宣传  对外交流  癌症康复  期刊杂志  继教科技  科技奖励  协会党建  会员服务  媒体之声
     您当前的位置 : 中国抗癌协会  >  学术会议  >  学术研讨
肿瘤光动力治疗未来展望及前沿进展篇——《中国恶性肿瘤学科发展报告(2024)》
2025-06-24 20:57

1. 概述

光动力疗法是肿瘤综合治疗的手段之一,特色鲜明,具有一定意义上的不可替代性。众所周知,恶性肿瘤治疗技术在不断地发展,有效性得以提高的同时,其副作用也影响了患者的生存质量。光动力疗法以其无创、副作用小、可重复治疗等优点,获得了广泛关注,在我国接受该技术治疗的患者以每年10-30%的速度递增,应用的科室众多,涉及消化内科、胃肠外科、呼吸与重症医学科、胸外科、神经外科、泌尿外科、妇科、介入医学科、耳鼻咽喉科、口腔科、皮肤科等。

光动力疗法的抗肿瘤作用源于三个相互关联的机制——对肿瘤细胞的直接杀伤,对肿瘤微血管的损伤及诱导机体抗肿瘤免疫反应的发生。

随着医学技术的进步,以往光动力疗法所面临的临床问题如激光的穿透深度有限、缺氧微环境下作用效果差以及光敏剂靶向性不足等,国产药械企业长足发展,从无到有,从弱到强,已得到有效解决。如何将其尽快应用到光动力的临床治疗中,是肿瘤光动力治疗事业的未来发展方向,需各个相关领域的专家相互配合,不断探索与尝试。本报告着重国内、外肿瘤光动力治疗的研究进展,分析我国光动力研究的优势与不足,并对未来肿瘤光动力治疗的发展方向做出科学性的预测。最后总结出十大前沿进展。

4. 本学科发展趋势与对策

 本学科未来发展趋势一定是从早期肿瘤和晚期股息治疗着手,取得疗效和得到数据后向和其他治疗手段的联合使用发展,如光动力联合手术、联合化疗、联合放疗、联合介入、联合靶向药及免疫、联合中药等。对策是(1)、在一些具备条件的医疗中心分别设立早期肿瘤或者是癌前病变的多中心研究,目前在口腔科口腔黏膜白班、女性下生殖道癌前病变、早起不具备手术切除条件的鼻咽肿瘤、皮肤癌等领域具备此条件;(2)、设立晚期肿瘤股息治疗多中心研究,目前在呼吸道、消化道肿瘤的补充治疗,具备此条件;(3)、开拓光动力治疗不可替代的治疗领域,如胆管癌,尿道癌等。

4.1 未来5年发展的战略需求      

未来发展的战略需求主要有几个方面:(1)、政策支持,包括医保政策、药品价格的完善和落地;(2)、药械企业不断发展,生产出更加优质和便宜的药物和医疗器械;(3)、人才培养,大力培训学员,推广技术,规范化开展。

4.2 未来5年重点发展方向     

未来5年重点发展方向聚焦在以下几个方面:(1)、机制基础研究,包括药代学、组织学、肿瘤微环境、免疫学等;(2)、药械方面你,高武纯度更高,激发激光穿透性更高的波长,可控的并发症研究;(3)、临床研究方面,更高级别的循证医学证据,范围更大的多中心研究,光动力疗法与肿瘤其他治疗的联合序贯治疗策略。

4.3 未来5年发展对策        

未来5年发展对策:(1)、遴选一批具备一定条件的研究中心开展机制研究,以口腔粘膜病变和早期食管癌为突破口;(2)、对接药企、器械生产企业和高校科研院所,加强光敏剂、激光、光导纤维的研发;(3)、继续推动已经开展的八个方面的多中心研究;(4)、对接国外学术团体,掌握国际学术前沿,引领国内学科发展。

5. 2025年中国肿瘤光动力治疗学科十大前沿进展

(1)胜利油田中心医院崔永胜团队治疗引导方式研究进展:创新性地拓展了多种光动力治疗的导引路径:通过鼻饲管作为媒介,实现对食管及胃肿瘤的精准光动力治疗;利用导管导丝,成功开辟了结直肠肿瘤的光动力治疗新途径;针对胆管肿瘤,采用经皮穿刺导引的方法,有效解决了治疗过程中的定位与导入难题;在软组织实性肿瘤的治疗上,经皮穿刺导引技术也取得了显著进展,为临床治疗提供了更多有效的手段。这些创新方法的研究,为光动力治疗在不同类型肿瘤的应用中,提供了更广泛、更有效的治疗策略。

(2)国医华科(天津)医疗科技集团有限公司研发的1.1类小分子化学药光敏抗肿瘤药物“超级卟啉”,具备高效、低毒、避光周期短、广谱抗肿瘤的特点,该药物的肿瘤细胞光敏抑制率高达72-95%,避光周期约为1天。另外,该公司研发的石英材质医用激光光纤(柱状端),传输效率高、承受功率大、柔韧性强、无光老化等特点,具备易定位、便于精准治疗、不易烧毁、节约手术时间等功能,最大功率上限为3W,传输效率达95%以上。

(3)青岛大学附属医院消化内科曹彬团队研究成果,改良内镜下胆道支架联合光动力和/或射频消融在肝外胆管癌姑息治疗中的应用,被美国国际消化大会采用,光动力疗法(PDT)或射频消融术(RFA)联合胆道支架术治疗肝外胆管癌(EHC)具有更好的疗效和安全性。在光动力疗法和/或射频消融治疗 EHC 前放置支架,取得了良好的疗效,显著提高手术成功率,减少术后并发症,缩短康复时间。

(4)北京大学深圳医院开展系统性光动力治疗宫颈癌前病变和早期宫颈癌,2020年牵头了全国多中心项目《光动力治疗下生殖道癌前病变的有效性与安全性的多中心对照研究》,鉴于目前的临床研究成果,由中国抗癌协会肿瘤光动力治疗专业委员会等制定了《血卟啉注射液光动力疗法治疗子宫颈高级别鳞状上皮内病变专家共识(2025版)》,发表在中国激光医学杂志(2025年2月第34卷第1期)。

(5)华西医院陈谦明团队首次通过真实世界研究发现PDT可以降低口腔白斑病的癌变风险,发现铁死亡通路的关键负调控因子SLC7A11、免疫检查点分子PD-1在口腔白斑病PDT治疗抵抗中发挥了重要作用,联用铁死亡诱导剂或PD-1单抗可增强PDT疗效。

(6)重庆新桥医院等多家医院研究证实,喜泊分在肿瘤精准治疗与诊断领域中实现了多项进展:在恶性胸腔积液(MPE)治疗中,通过光动力疗法联合化疗/免疫治疗的方式,实现通过活性氧杀伤与免疫激活的双重机制,显著提升积液控制率至85%以上,验证了其疗效和安全性。另外,在荧光诊断领域中也取得了进展如在脑胶质瘤中,光动力诊断(PDD)展现了独特的优势,PDD通过荧光标记肿瘤浸润区域,使外科医生能够在术中实时区分肿瘤与正常组织,从而最大程度地实现肿瘤全切。在肺癌、食管癌等手术中,PDD能够帮助识别微小转移灶和亚临床病灶,减少术后复发风险。实现 “诊断-治疗一体化”的模式。

(7)深圳市雷迈科技有限公司研发了PDT630-D2型光动力治疗设备,具有双路输出激光(即可以同时输出也可以分别设置输出)的特点,取批国家三类医疗器械注册证。其功能是同时进行治疗两位肿瘤患者或不同部位的肿瘤,在国内外同领域处于领先水平。另外,雷迈科技参与起草制定的国家相关行业标准优于欧美日等发达国家标准,为中国光动力设备的发展奠定了坚实的基础。

(8)青岛大学附属医院林存智团队关于气管支气管肺癌光动力研究成果:体外细胞实验证明了PDT对A549肺腺癌细胞凋亡是通过Caspase-3 和 Bax的上调,Bcl-2 和 Survivin 的下调表达来实现的,裸鼠移植瘤动物模型实验验证了PDT明显抑制肿瘤细胞增长,其作用机制是抑制VEGF和 HIF-1α 基因表达,上调Bax和 Caspase-3,下调Bcl-2 基因表达来促进肿瘤细胞凋亡的,PDT可以抑制肿瘤血管拟态形成,即抑制肿瘤血管的形成,是通过下调骨桥蛋白(OPN)和VEGF表达来实现的。在同一条件下PDT对腺癌、鳞癌、小细胞肺癌疗效评价,研究表明光敏剂在肿瘤细胞内定位于细胞浆,PDT对这三种类型肿瘤细胞都有杀伤作用,鳞癌效果更加明显,而且不损伤正常粘膜细胞。发现鳞癌以凋亡为主,而小细胞肺癌以自噬为主,且先行PDT治疗后,再行化疗联合免疫治疗效果更优,早期支气管肺癌可以达到完全根治效果。

(9)浙江省人民医院胡韶山团队通过术前成像元宇宙定位技术结合患者肿瘤组织样本单细胞测序技术对瘤周不同区域内的肿瘤细胞浸润及免疫微环境特征进行了评估,提出并验证了GBM的瘤周“高脑血流量界面”,为精准光动力靶向治疗提供实验依据。另外,该团队设计了一种能够穿越血脑屏障(BBB)的纳米复合材料,能够在还原性肿瘤微环境中精准且快速释放。通过靶向递送药物至肿瘤组织,诱导铁死亡,同时产生高水平活性氧,促进氧死亡的发生。通过结合光动力疗法与铁死亡和氧死亡新型死亡机制的协同治疗,或许能为GBM患者带来新的治疗希望。

(10)河南科技大学第一附属医院高社干团队:创制新型纳米硒化铜光热光敏剂,实现药物可控释放、肿瘤组织深部穿透及靶向蓄积;牵头制定“光动力疗法—CACA技术指南(食管癌)”和“中国食管癌光动力治疗临床应用专家共识2024版” 2项指南,实现低创伤、精准靶向的 “保器官”策略。

【主编】

胡效坤   青岛大学附属医院

邹 珩   北京中医药大学东直门医院

李 伟   青岛大学附属医院

【副主编】

王洪武   北京中医药大学东直门医院

胡韶山   浙江省人民医院

王宏志   中国科学院合肥肿瘤医院

张恒柱   江苏省苏北人民医院

陈谦明   浙江大学医学院附属口腔医院

李瑞珍   北京大学深圳医院

陈 昊    兰州大学第二附属医院

崔永胜   胜利油田中心医院


 

【编委】(按姓氏拼音排序)

毕 红   安徽大学材料科学与工程学院

但红霞   四川大学华西口腔医院

范惠珍   江西省宜春市人民医院

黄明东   福州大学

胡林军   北京桓兴肿瘤医院

林存智   青岛大学附属医院

李长忠   北京大学深圳医院

李 媛   北京中医药大学东直门医院

李 敬   四川大学华西口腔医院

刘 昱   北京大学深圳医院

唐瑶云   湖南湘雅医院

田 军   中国医学科学院肿瘤医院深圳医院

王秀丽   上海市皮肤病医院

王春喜   解放军总医院第一医学中心

王佩茹   上海市皮肤病医院

吴裕文   江西省宜春市人民医院

谢 蕊    哈尔滨医科大学肿瘤医院

闫秀伟   浙江省人民医院

杨洛琦   北京中医药大学

阴慧娟   中国医学科学院生物

曾 昕   四川大学华西口腔医院

张梦曦    河南科技大学第一附属医院

赵 行    四川大学华西口腔医院

曹 彬    青岛大学附属医院

张 兵    中国科学院合肥肿瘤医院

张国龙   上海市皮肤病医院

吴瑞芳   北京大学深圳医院

吴 平    湖南湘雅医院

李新宇   山东省立医院

参考文献(向上滑动阅览)

[1] Liang L, Wang W, Li M, Xu Y, Lu Z, Wei J, Tang BZ, Sun F, Tong R. Cancer Photodynamic Therapy Enabled by Water-Soluble Chlorophyll Protein. ACS Appl Mater Interfaces. 2025 Mar 6.

[2] An W, Zhang K, Li G, Zheng S, Cao Y, Liu J. Hypericin mediated photodynamic therapy induces ferroptosis via inhibiting the AKT/mTORC1/GPX4 axis in cholangiocarcinoma. Transl Oncol. 2025 Feb; 52:102234.

[3] Cardinali CAEF, Fabiano de Freitas C, Sonchini Gonçalves R, Amanda Pedroso de Morais F, Nunes de Lima Martins J, Martins YA, Fernando Comar J, de Souza Bonfim-Mendonça P, Tessaro AL, Kimura E, Caetano W, Hioka N, Brunaldi K, Ravanelli MI. "Effects of Redox Status on Immediate Hypericin-Mediated Photodynamic Therapy in Human Glioblastoma T98G Cell Line". ACS Omega. 2024 Dec 28;10(1):1100-1109.

[4] 苏增平.合成生物学策略构建新型苝醌类光敏剂[D].江南大学,2024.

[5] Xie M, Jiang C, Zhang C, Wu Y, Zhang X, Yao R, Han C, Dai Y, Xu K, Zheng S. Tumor microenvironment triggered iron-based metal organic frameworks for magnetic resonance imaging and photodynamic-enhanced ferroptosis therapy. J Colloid Interface Sci. 2025 May;685:382-395. 

[6] Chen Z, Tian Z, Wu Y, Liu S. DNA tetrahedron nanomedicine for enhanced antitumor and antimetastatic effect through the amplification of mitochondrial oxidative stress. Acta Biomater. 2025 Feb 6:S1742-7061(25)00096-0

[7] Shanmugapriya K, Kang HW. Cellulose nanocrystals/cellulose nanofibrils-combined astaxanthin nanoemulsion for reinforcement of targeted tumor delivery of gastric cancer cells. Int J Pharm. 2024 Dec 25;667(Pt B):124944.

[8] Manoharan D, Wang LC, Chen YC, et al. Catalytic Nanoparticles in Biomedical Applications: Exploiting Advanced Nanozymes for Therapeutics and Diagnostics. Adv Healthc Mater. 2024 Sep;13(22):e2400746.

[9]Fang B, Bai H, Zhang J, et al. Albumins constrainting the conformation of mitochondria-targeted photosensitizers for tumor-specific photodynamic therapy[J]. Biomaterials, 2025, 315: 122914.

[10]Peng Y, Mo R, Yang M, et al. Mitochondria-Targeting AIEgens as Pyroptosis Inducers for Boosting Type-I Photodynamic Therapy of Tongue Squamous Cell Carcinoma[J]. ACS nano, 2024, 18(38): 26140-26152.

[11]Cai H, Wu X, Jiang L, et al. Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy[J]. Chinese Chemical Letters, 2024, 35(4): 108946.

[12]Xiang C, Liu Y, Ding Q, et al. Precise Molecular Engineering of Multi‐Suborganelle Targeted NIR TypeI AIE Photosensitizer and Design of Cell Membrane‐Anchored Anti‐Tumor Pyroptosis Vaccine[J]. Advanced Functional Materials, 2024: 2417979.

[13]Zou J, Li Z, Zhu Y, et al. pH/GSH dual responsive nanosystem for nitric oxide generation enhanced type I photodynamic therapy[J]. Bioactive materials, 2024, 34: 414-421.

[14]Li Y, Zhang C, Wu Q, et al. Enzyme‐activatable near‐infrared photosensitizer with high enrichment in tumor cells based on a multi‐effect design[J]. Angewandte Chemie International Edition, 2024, 63(7): e202317773.

[15]He M, Zhang M, Xu T, et al. Enhancing photodynamic immunotherapy by reprograming the immunosuppressive tumor microenvironment with hypoxia relief[J]. Journal of Controlled Release, 2024, 368: 233-250.

[16]Dai W, Zhou X, Zhao J, Lei L, Huang Y, Jia F, Tang Z, Ji J, Jin Q. Tumor microenvironment-modulated nanoparticles with cascade energy transfer as internal light sources for photodynamic therapy of deep-seated tumors. Biomaterials. 2025 Jan;312:122743. doi: 10.1016/j.biomaterials.2024.122743. Epub 2024 Aug 6. PMID: 39111233.

[17]Han Q, Zou P, Wei X, Chen J, Li X, Quan L, Wang R, Xing L, Xue X, Zhou Y, Chen M. An esophageal stent integrated with wireless battery-free movable photodynamic-therapy unit for targeted tumor treatment. Mater Today Bio. 2024 Dec 9;30:101394. doi: 10.1016/j.mtbio.2024.101394. PMID: 39759842; PMCID: PMC11697610.

[18] Li M, Wang C, Yu Q, Chen H, Ma Y, Wei L, Wu MX, Yao M, Lu M. A wearable and stretchable dual-wavelength LED device for home care of chronic infected wounds. Nat Commun. 2024 Oct 30;15(1):9380. doi: 10.1038/s41467-024-53579-6. PMID: 39477919; PMCID: PMC11525593.

[19] Zhang, J., Mao, X., Jia, Q. et al. Body-worn and self-powered flexible optoelectronic device for metronomic photodynamic therapy. npj Flex Electron 8, 60 (2024). https://doi.org/10.1038/s41528-024-00345-9

[20] Xue Z, Chou W, Xu Y, Cheng Z, Ren X, Sun T, Tong W, Xie Y, Chen J, Zhang N, Sheng X, Wang Y, Zhao H, Yang J, Ding H. Battery-free optoelectronic patch for photodynamic and light therapies in treating bacteria-infected wounds. Biosens Bioelectron. 2024 Oct 1;261:116467. doi: 10.1016/j.bios.2024.116467. Epub 2024 Jun 8. PMID: 38901392.

[21] Liu J, Sun B, Li W, Kim HJ, Gan SU, Ho JS, Rahmat JNB, Zhang Y. Wireless sequential dual light delivery for programmed PDT in vivo. Light Sci Appl. 2024 May 15;13(1):113. doi: 10.1038/s41377-024-01437-x. PMID: 38744817; PMCID: PMC11094163.

[22] Yifan Zhang, Guangle Feng, Ting He, Min Yang, Jing Lin, Peng Huang. Traceable Lactate-Fueled Self-Acting Photodynamic Therapy against Triple-Negative Breast Cancer. Research. 2024;7:0277.DOI:10.34133/research.0277

[23] Qian Han, Zengyi Fang, Rui Lin, Junyang Chen, Xianhao Wei, Cuicui Gong, Zhixin Yang, Pingjin Zou, Jingyuan Zhu, Lili Xing, Xinyu Xue, Jinyi Lang, Yi Zhou, Meihua Chen. Piezo-photodynamic therapy of Au@PEG-ZnO nanostructures enabled with a battery-free wireless cancer therapeutic dot, Nano Energy,2024;125:109530.

[24] Yuan Chen, Hongye Guan, Xinlu Wang, Yao Wen, Qingqing He, Rui Lin, Zhixin Yang, Shan Wang, Xinyu Zhu, Tianyan Zhong, Lili Xing, Xinyu Xue, Tao Chen. Implantable and wireless-controlled antibacterial patch for deep abscess eradication and therapeutic efficacy monitoring. Nano Energy,2024;131:110193.

[25] Qiao Y, Liu X, Zheng Y, Zhang Y, Li Z, Zhu S, Jiang H, Cui Z, Wu S. Wireless Powered Microwave-Light Conversion Platform with Dual-Stimulus Nanoresponder Coating for Deep-Seated Photodynamic Therapy. ACS Nano. 2024 Jul 2;18(26):17086-17099. doi: 10.1021/acsnano.4c03654. Epub 2024 Jun 19. PMID: 38952327.

[26] Yuan, Y., Yan, D., Duan, R., Xiong, H., Wen, W., Wang, S. and Zhang, X. (2025), A Flexible Antibacterial Gel Electrochemiluminescence Device for Monitoring and Therapy of Chronic Diabetic Wounds. Aggregate e703. https://doi.org/10.1002/agt2.703

[27] Zhirong Gu, Liu Wu, Jinxing Li,et al. Bibliometric and visual analysis of photodynamic therapy for lung cancer from 2010 to 2022.  Translational cancer research[J] 2024 Feb 29;13(2):738-751

[28] Lin Cunzhi; Wang Jjingyu; Ma Yijiang; Han Weizhong; Cao Yiwei; Shao Mingju;

Cui Shichao. Effect of a 630 nm light on vasculogenic mimicry in a549 lung

adenocarcinoma  cells in vitro[J]. Photodiagnosis and Photodynamic Therapy,2023, 44: 103831.

[29]Lin Cunzhi; Zhang Yuanyuan; Liao Jiemei; Cui Shichao; Gao Zhe; Han Weizhong.

Effect of photodynamic therapy mediated by hematoporphyrin derivatives on small  cell lung cancer h446 cells and bronchial epithelial beas-2b cells[J]. Lasers in medical science,2024, 39(1): 65-72.  

[30]Nana Li , Shichao Cui , Aizhen Yang , Baohong Xiao , Yiwei Cao , Xiaohui Yang , Cunzhi Lin. Sequence-dependent effects of hematoporphyrin derivatives (HPD) photodynamic therapy and cisplatin on lung adenocarcinoma cells.  Photodiagnosis and Photodynamic Therapy. 2024(47), ttps://doi.org/10.1016/j.pdpdt.2024.104102.

[31] Tingting Liu, Enhua Zhang, Shichao Cui, Haoyu Dai, Xiaohui Yang, Cunzhi Lin. Effects of 630 nm laser on apoptosis, metastasis, invasion and epithelial-to- mesenchy mal transition of human lung squamous cell carcinoma H520 cells mediated by hematoporphyrin derivatives[J]. Lasers in Medical Science. 2024,39:228.

[32]牛建明,赵晨茜,李润浦等.注射用紫杉醇(白蛋白结合型)联合光动力疗法治疗晚期非小细胞肺癌致中心气道狭窄的临床效果[J].广西医学,2023, 45 (8) :916-922.

[33]Zhou, J. et al.DVDMS (Sinoporphyrin sodium)-mediated photodynamic therapy (PDT) vs treatment of physician’s choice in patients with advanced esophageal cancer (EC): Preliminary results of DYNA-Esophagus03, a randomized, open-labeled, multicenter phase IIIb study.Annals of Oncology, Volume 35, S881

[34]Chen Q,Mo S,Zhu L,et al.Prognostic implication of UBE2C+CD8+T cell in neoadjuvant immune checkpoint blockade plus chemotherapy for locally advanced esophageal cancer[J].Int Immunopharmacol,2024,130:111696.

[35] Zhao XH,Gao HM,Wen JY,et al.Immune checkpoint inhibitors combined with or without radio(chemo)therapy for locally advanced or recurrent/metastatic esophageal squamous cell carcinoma[J].Discov Oncol,2023,14(1):165.

[36]Zhao XH,Gao HM,Wen JY,et al.Immune checkpoint inhibitors combined with or without radio(chemo)therapy for locally advanced or recurrent/metastatic esophageal squamous cell carcinoma[J].Discov Oncol,2023,14(1):165.

[37] XU B, HE P, WANG Y, et al. PDT for Gastric Cancer - the view from China[J]. Photodiagnosis Photodyn Ther, 2023, 42: 103366.

[38] YU Y, YU R, WANG N, et al. Photodynamic therapy in combination with immune checkpoint inhibitors plus  chemotherapy for first-line treatment in advanced or metastatic gastric or  gastroesophageal junction cancer: A phase 2-3 clinical trial protocol[J]. Front Pharmacol, 2023, 14: 1063775.

[39] HUI YJ, CHEN H, PENG XC, et al. Up-regulation of ABCG2 by MYBL2 deletion drives Chlorin e6-mediated photodynamic  therapy resistance in colorectal cancer[J]. Photodiagnosis Photodyn Ther, 2023, 42: 103558.

[40] ZHU M, HUANG B, YANG G, et al. Hydrogen Sulfide (H(2)S) Activatable Photodynamic Therapy Against Colon Cancer by  Tunable FRET Effect[J]. Chem Asian J, 2025, 20(1): e202400840.

[41] HE YC, HAO ZN, LI Z, et al. Nanomedicine-based multimodal therapies: Recent progress and perspectives in  colon cancer[J]. World J Gastroenterol, 2023, 29(4): 670-681.

[42]Wang W, Y Gao, J Xu, et al., 2024. A NRF2 Regulated and the Immunosuppressive Microenvironment Reversed Nanoplatform for Cholangiocarcinoma Photodynamic-Gas Therapy. Adv Sci (Weinh). 11,14, e2307143. DOI: 10.1002/advs.202307143.

[43]Chen H, H Li, H Li, et al., 2025. Umbrella review of adjuvant photodynamic therapy for cholangiocarcinoma palliative treatment. Photodiagnosis Photodyn Ther. 51, 104472. DOI: 10.1016/j.pdpdt.2025.104472.

[44] Zheng RS, Chen R, Han BF, et al. Cancer incidence and mortality in China, 2022[J]. Zhonghua Zhong Liu Za Zhi, 2024,46(3):221-231.Doi:10.3760/cma.j.cn112152-20240119-00035.

[45] Liu Y, Wu R, Li C, Wei L, Li R. Photodynamic therapy with HiPorfin for cervical squamous intraepithelial lesion at childbearing age[J]. Photodiagnosis Photodyn Ther, 2024,46:104018.Doi:10.1016/j.pdpdt.2024.104018.

[46] Liu Y, Wu R, Li C, Wei L, Li R. Successful pregnancy and delivery after HiPorfin photodynamic therapy for cervical high-grade squamous intraepithelial lesion[J]. Photodiagnosis Photodyn Ther, 2024,46:104062.Doi:10.1016/j.pdpdt.2024.104062.

[47] Liu Y, Li R, Li C, et al. Photodynamic therapy compared with loop electrosurgical excision procedure in patients with cervical high-grade squamous intraepithelial lesion[J]. Sci Rep, 2024,14(1):27090.Doi:10.1038/s41598-024-78445-9.

[48] Liu Y, Li R, Li C, Shang J, Wei L, Wu R. Hiporfin-photodynamic therapy for high-grade squamous intraepithelial lesions of the endocervical canal in young women[J]. Sci Rep, 2024,14(1):28423.Doi:10.1038/s41598-024-79980-1.

[49] LI X, LIU J, TONG P, et al. Efficacy of photodynamic therapy for oral multifocal papilloma: a case report [J]. Int J Oral Maxillofac Surg, 2024, 53(12): 1028-31.

[50] LI C, WANG D, DING J. Potential of photodynamic therapy as a minimally vasive treatment for oral verrucous carcinoma [J]. Photodiagnosis Photodyn Ther, 2024, 49: 104320.

[51] 吕世萍, 杨璐, 金鑫. 光动力治疗右颊黏膜疣状癌1例报道及文献回顾 [J]. 口腔疾病防治, 2024, 32(2): 131-6.

[52] SONG Y, TANG F, LIU J, et al. A complete course of photodynamic therapy reduced the risk of malignant transformation of oral leukoplakia [J]. Photodiagnosis Photodyn Ther, 2024, 49: 104338.

[53] WANG F, SONG Y, XU H, et al. Prediction of the short-term efficacy and recurrence of photodynamic therapy in the treatment of oral leukoplakia based on deep learning [J]. Photodiagnosis Photodyn Ther, 2024, 48: 104236.

[54] YANG D, YANG D, SONG Y, et al. Ferroptosis Induction Enhances Photodynamic Therapy Efficacy for OLK [J]. J Dent Res, 2024, 103(12): 1227-37.

[55] DONG Y, ZENG K, AI R, et al. Single-cell transcriptome dissecting the microenvironment remodeled by PD1 blockade combined with photodynamic therapy in a mouse model of oral carcinogenesis [J]. MedComm (2020), 2024, 5(7): e636.

[56] CHEN L, YIN Q, ZHANG H, et al. Protecting Against Postsurgery Oral Cancer Recurrence with an Implantable Hydrogel Vaccine for In Situ Photoimmunotherapy [J]. Adv Sci (Weinh), 2024, 11(46): e2309053.

[57] YIN Q, ZHANG J, ZHANG H, et al. Cascade Nanoreactor Employs Mitochondrial-Directed Chemodynamic and δ-ALA-Mediated Photodynamic Synergy for Deep-Seated Oral Cancer Therapy [J]. Adv Healthc Mater, 2024, 13(19): e2304639.

[58] LAN Z, LIU W J, YIN W W, et al. Biomimetic MDSCs membrane coated black phosphorus nanosheets system for photothermal therapy/photodynamic therapy synergized chemotherapy of cancer [J]. J Nanobiotechnology, 2024, 22(1): 174.

[59] LI X, HAO M, LIU A, et al. Dual-activity nanozyme as an oxygen pump to alleviate tumor hypoxia and enhance photodynamic/ NIR-II photothermal therapy for sniping oral squamous cell carcinoma [J]. Acta Biomater, 2024, 190: 476-87.

[60] LI X, LI Z, SU Y, et al. Carrier-Free Hybrid Nanoparticles for Enhanced Photodynamic Therapy in Oral Carcinoma via Reversal of Hypoxia and Oxidative Resistance [J]. Pharmaceutics, 2024, 16(9).

[61] YU L, XU Z, ZHU G, et al. High-Performance Photodynamic Therapy of Tongue Squamous Cell Carcinoma with Multifunctional Nano-Verteporfin [J]. Int J Nanomedicine, 2024, 19: 2611-23.

[62] ZHANG Y, YE S, ZHOU Y, et al. Salvianolic acid B as a potent nano-agent for enhanced ALA-PDT of oral cancer and leukoplakia cells [J]. Oral Dis, 2024, 30(3): 1091-9.

[63] 付凯钰 常, 史恩宇, 史澍睿. 共载吲哚菁绿和Nrf2-siRNA的多功能纳米粒子对抗口腔鳞状细胞癌的体外作用研究 [J]. 口腔医学研究, 2024, 40(5): 422-8.

[64]Liu J, Kang D W, Fan Y, et al. Nanoscale covalent organic framework with staggered stacking of phthalocyanines for mitochondria-targeted photodynamic therapy[J]. Journal of the American Chemical Society, 2023, 146(1): 849-857.

[65]He L, Ma D. Self-assembled phthalocyanine-based nano-photosensitizers in photodynamic therapy for hypoxic tumors[J]. Materials Chemistry Frontiers, 2024, 8(23): 3877-3897.

[66]Zhen W, Kang D W, Fan Y, et al. Simultaneous protonation and metalation of a porphyrin covalent organic framework enhance photodynamic therapy[J]. Journal of the American Chemical Society, 2024, 146(24): 16609-16618.

[67]Wang B, Zhang G, Chen Z, et al. Lab‐in‐Cell: A Covalent Photosensitizer Reverses Hypoxia and Evokes Ferroptosis and Pyroptosis for Enhanced Anti‐Tumor Immunity[J]. Advanced Materials, 2025: 2415673.

[68]Zhang H, Liu Y, Qu S. Recent advances in photo‐responsive carbon dots for tumor therapy[J]. Responsive Materials, 2024, 2(2): e20240012.

[69]Zhang Y, Jia Q, Nan F, et al. Carbon dots nanophotosensitizers with tunable reactive oxygen species generation for mitochondrion-targeted type I/II photodynamic therapy[J]. Biomaterials, 2023, 293: 121953.

[70] Navarrete de Gálvez E, Fonda Pascual P, Aguilera Arjona J, de Andrés Díaz JR, Navarrete de Gálvez M, Perera Mohamed S, de Gálvez Aranda MV. Proposal and operational evaluation of a device for external and internal photodynamic therapy treatments. Photodiagnosis Photodyn Ther. 2025 Feb;51:104440. doi: 10.1016/j.pdpdt.2024.104440. Epub 2024 Dec 5. PMID: 39645008.

[71] Cabral FV, Riahi M, Persheyev S, Lian C, Cortez M, Samuel IDW, Ribeiro MS. Photodynamic therapy offers a novel approach to managing miltefosine-resistant cutaneous leishmaniasis. Biomed Pharmacother. 2024 Aug;177:116881. doi: 10.1016/j.biopha.2024.116881. Epub 2024 Jun 24. PMID: 38917757.

[72]Yujiro Itazaki, Kei Sakanoue, Katsuhiko Fujita, Izumi Kirino, Kazuhiro Eguchi, Yutaka Miyazono, Ryoichi Yamaguchi, Takasumi Tsunenari, Takao Sugihara, Kenji Kuwada, Naoki Kobayashi, Tsuyoshi Goya, Katsuyuki Morii, Hironori Tsujimoto, Yuji Morimoto. Photodynamic Therapy for Deep Organ Cancer by Implantable Wireless OLEDs. bioRxiv 2024.11.18.624193; doi: https://doi.org/10.1101/2024.11.18.624193

[73] J. Kim, H. K. Lee, J. Park, S. I. Jeon, I. S. Lee, W. S. Yun, Y. Moon, J. Choi, M. K. Shim, J. Kim, H. Cho, N. Shim, N. Hwang, G. R. Koirala, M. Gwak, S. Han, D.-H. Kim, W. S. Chang, T. Kim, K. Kim, Implantable MicroLED-Mediated Chemo-Photodynamic Combination Therapy for Glioma Treatment. Adv. Funct. Mater. 2024, 34, 2316386.

[74] Kim MS, An J, Lee JH, Lee SH, Min S, Kim YB, Song M, Park SH, Nam KY, Park HJ, Kim KS, Oh SH, Hahn D, Moon J, Park JW, Park JS, Kim TS, Kim BJ, Lee KJ. Clinical Validation of Face-Fit Surface-Lighting Micro Light-Emitting Diode Mask for Skin Anti-Aging Treatment. Adv Mater. 2024 Dec;36(50):e2411651. doi: 10.1002/adma.202411651. Epub 2024 Oct 22. PMID: 39439130.

[75]Takumi Sonokawa, Mitsunobu Ino, Jitsuo Usuda et al. Long-term outcomes of PDT for centrally-located early lung cancers with tumor diameters > 2.0 cm Photodiagnosis and photodynamic therapy[J]. 2024 Jun;47:

[76]Gennady Meerovich, Evgeniya Kogan, Igor Romanishkin et al. Potential of photodynamic therapy using polycationic photosensitizers in the treatment of lung cancer patients with SARS-CoV-2 infection and bacterial complications: Our recent experience Photodiagnosis and photodynamic therapy[J]. 2025 Feb;51:104447 

[77]Khaled Ramadan, Tina Saeidi, Edson Brambate, et al. Development of a protocol for whole-lung in vivo lung perfusion-assisted photodynamic therapy using a porcine model Journal of biomedical optics[J]. 2024 Nov;29(11):118001 

[78]Li M, EDC Bosman, OM Smith, et al., 2024. Comparative analysis of whole cell-derived vesicular delivery systems for photodynamic therapy of extrahepatic cholangiocarcinoma. J Photochem Photobiol B. 254, 112903. DOI: 10.1016/j.jphotobiol.2024.112903.

[79] Qiao J, Qiu H, Chen Q, et al. Systemic Photodynamic Therapy vs. Loop Electrosurgical Excision: Treatment of Hight Grade Squamous Intraepithelial Lesion[J]. Chin J Laser Med Surg, 2024,33(5):181-188

[80] Liu Y, Wu R, Li C, Duan L, Wei L, Li R. HiPorfin photodynamic therapy for vaginal high-grade squamous intraepithelial lesion[J]. Archives of Gynecology and Obstetrics, 2024,310(2):1197-1205.Doi:10.1007/s00404-024-07600-4.

[81] Liu Y, Wu R, Li C, et al. Hiporfin photodynamic therapy for early-stage cervical cancer: A case report[J]. Photodiagnosis Photodyn Ther, 2024:104422.Doi:10.1016/j.pdpdt.2024.104422.

[82] 刘昱, 杜辉, 谭一舟, et al. 血卟啉注射液光动力疗法治疗子宫颈高级别鳞状上皮内病变专家共识(2025版)[J]. 中国激光医学杂志, 2025,34(1):30-35.Doi:10. 13480/j. issn1003-9430. 2025. 0030.

[83] KAZEMI K S, KAZEMI P, MIVEHCHI H, et al. Photodynamic Therapy: A Novel Approach for Head and Neck Cancer Treatment with Focusing on Oral Cavity [J]. Biol Proced Online, 2024, 26(1): 25.

[84] CARDOSO M, MARTO C M, PAULA A, et al. Effectiveness of photodynamic therapy on treatment response and survival in patients with recurrent oral squamous cell carcinoma: A systematic review [J]. Photodiagnosis Photodyn Ther, 2024, 48: 104242.

[85] YOUSEFI-KOMA A A, BANIAMERI S, YOUSEFI-KOMA H, et al. Comparative evaluations of different surgical and non-surgical treatment methods for early invasive and micro invasive squamous cell carcinoma in the oral and maxillofacial regions: A systematic review [J]. J Stomatol Oral Maxillofac Surg, 2024, 126(2): 102034.

[86] PERALTA-MAMANI M, SILVA B M D, HONÓRIO H M, et al. CLINICAL EFFICACY OF PHOTODYNAMIC THERAPY IN MANAGEMENT OF ORAL POTENTIALLY MALIGNANT DISORDERS: A SYSTEMATIC REVIEW AND META-ANALYSIS [J]. J Evid Based Dent Pract, 2024, 24(2): 101899.

[87] BHATTARAI B P, SINGH A K, SINGH R P, et al. Recurrence in Oral Leukoplakia: A Systematic Review and Meta-analysis [J]. J Dent Res, 2024, 103(11): 1066-75.

[88] GUPTA P, KUMAR R R, TAYAL M, et al. Photodynamic therapy for early and recurrent oral cancers and pre-malignant lesions. Need of the hour for India [J]. Photodiagnosis Photodyn Ther, 2024, 50: 104378.

[89] MOLON A C, HEGUEDUSCH D, NUNES F D, et al. 5-ALA mediated photodynamic therapy increases natural killer cytotoxicity against oral squamous cell carcinoma cell lines [J]. J Biophotonics, 2024, 17(9): e202400176.

[90] NICOLÁS-MORALA J, ALONSO-JUARRANZ M, BARAHONA A, et al. Comparative response to PDT with methyl-aminolevulinate and temoporfin in cutaneous and oral squamous cell carcinoma cells [J]. Sci Rep, 2024, 14(1): 7025.

[91] CUI J, MAKITA Y, OKAMURA T, et al. Near-Infrared Light Photodynamic Therapy with PEI-Capped Up-Conversion Nanoparticles and Chlorin e6 Induces Apoptosis of Oral Cancer Cells [J]. J Funct Biomater, 2024, 15(11).

[92] SAHOVALER A, VALIC M S, TOWNSON J L, et al. Nanoparticle-mediated Photodynamic Therapy as a Method to Ablate Oral Cavity Squamous Cell Carcinoma in Preclinical Models [J]. Cancer Res Commun, 2024, 4(3): 796-810.

[93] D'ANTONIO D L, MARCHETTI S, PIGNATELLI P, et al. Effect of 5-Aminolevulinic Acid (5-ALA) in "ALADENT" Gel Formulation and Photodynamic Therapy (PDT) against Human Oral and Pancreatic Cancers [J]. Biomedicines, 2024, 12(6).

[94]Maytin EV, Zeitouni NC, Updyke A, Negrey J, Shen AS, Heusinkveld LE, Mack JA, Hu B, Anand S, Maytin TA, Giostra L, Warren CB, Hasan T. A Clinical Trial to Determine the Impact of Tumor Size, Histological Subtype, and Vitamin D Status on the Therapeutic Response of Basal Cell Carcinoma to Photodynamic Therapy. medRxiv [Preprint]. 2025 Feb 3:2025.01.30.25321144.

[95]Arjmand B, Bahadorimonfared A, Jahani Sherafat S, Moravvej H, Rezaei M, Daneshimehr F, Asri N, Farahani M. Comparison of the Efficacy of Photodynamic Therapy Versus Cisplatin Application. J Lasers Med Sci. 2024 Dec 24;15:e67.

[96]Karrer S, Unger P, Spindler N, Szeimies RM, Bosserhoff AK, Berneburg M, Arndt S. Optimization of the Treatment of Squamous Cell Carcinoma Cells by Combining Photodynamic Therapy with Cold Atmospheric Plasma. Int J Mol Sci. 2024 Oct 8;25(19):10808.

[97]Antonetti P, Pellegrini C, Caponio C, Bruni M, Dragone L, Mastrangelo M, Esposito M, Fargnoli MC. Photodynamic Therapy for the Treatment of Bowen's Disease: A Review on Efficacy, Non-Invasive Treatment Monitoring, Tolerability, and Cosmetic Outcome. Biomedicines. 2024 Apr 3;12(4):795.

[98]Bernal-Masferrer L, Gracia-Cazaña T, Najera-Botello L, Gomez-Mateo MC, Cerro P, Matei MC, Gallego-Rentero M, González S, Juarranz A, Gilaberte Y. Analysis of tumoral, stromal and glycolitic markers in the response basal cell carcinoma and Bowen disease to photodynamic therapy in real life. Photodiagnosis Photodyn Ther. 2025 Feb;51:104442.

[99]Antonetti P, Pellegrini C, Caponio C, Bruni M, Dragone L, Mastrangelo M, Esposito M, Fargnoli MC. Photodynamic Therapy for the Treatment of Bowen's Disease: A Review on Efficacy, Non-Invasive Treatment Monitoring, Tolerability, and Cosmetic Outcome. Biomedicines. 2024 Apr 3;12(4):795.

[100]Efendiev K, Alekseeva P, Skobeltsin A, Shiryaev A, Pisareva T, Akhilgova F, Mamedova A, Reshetov I, Loschenov V. Combined use of 5-ALA-induced protoporphyrin IX and chlorin e6 for fluorescence diagnostics and photodynamic therapy of skin tumors. Lasers Med Sci. 2024 Oct 31;39(1):266.

[101]Park J, Zhang J, Kim B. Development of optical microneedle-lens array for photodynamic therapy. Biomed Microdevices. 2025 Jan 28;27(1):6.

技术支持:乐问医学

 

版权所有:中国抗癌协会 | 技术支持:北方网 | 联系我们
津ICP备09011441号