设为首页 | 加入收藏 | English
首 页   关于协会  协会动态  会员之声  学术交流  科普宣传  对外交流  癌症康复  期刊杂志  继教科技  科技奖励  协会党建  会员服务  媒体之声
     您当前的位置 : 中国抗癌协会  >  学术会议  >  学术研讨
肿瘤光动力治疗研究进展篇(二)——《中国恶性肿瘤学科发展报告(2024)》
2025-06-24 20:57

1. 概述

光动力疗法是肿瘤综合治疗的手段之一,特色鲜明,具有一定意义上的不可替代性。众所周知,恶性肿瘤治疗技术在不断地发展,有效性得以提高的同时,其副作用也影响了患者的生存质量。光动力疗法以其无创、副作用小、可重复治疗等优点,获得了广泛关注,在我国接受该技术治疗的患者以每年10-30%的速度递增,应用的科室众多,涉及消化内科、胃肠外科、呼吸与重症医学科、胸外科、神经外科、泌尿外科、妇科、介入医学科、耳鼻咽喉科、口腔科、皮肤科等。

光动力疗法的抗肿瘤作用源于三个相互关联的机制——对肿瘤细胞的直接杀伤,对肿瘤微血管的损伤及诱导机体抗肿瘤免疫反应的发生。

随着医学技术的进步,以往光动力疗法所面临的临床问题如激光的穿透深度有限、缺氧微环境下作用效果差以及光敏剂靶向性不足等,国产药械企业长足发展,从无到有,从弱到强,已得到有效解决。如何将其尽快应用到光动力的临床治疗中,是肿瘤光动力治疗事业的未来发展方向,需各个相关领域的专家相互配合,不断探索与尝试。本报告着重国内、外肿瘤光动力治疗的研究进展,分析我国光动力研究的优势与不足,并对未来肿瘤光动力治疗的发展方向做出科学性的预测。最后总结出十大前沿进展。

3. 国内外研究进展比较

3.1 国际光动力学科发展现状

3.1.1 光敏剂

光敏剂作为光动力治疗(PDT)中的核心要素之一,其研究进展对PDT的临床应用发展具有重要意义。传统光敏剂如血卟啉衍生物(HpD),因其避光时间长、ROS生成效率低和组织穿透深度浅等缺点限制了其疗效[64-65]。为克服这些问题,研究人员致力于开发新型光敏剂,以提高PDT的治疗效果。例如,Zhen等人[66]通过质子化和金属化策略构建了亚胺连接的卟啉-COF(Ptp-Fe)纳米材料。在光照下,Ptp-Fe实现从质子化卟啉到Fe3+配位卟啉的快速能量转移,通过I型和II型PDT过程显著增强PDT效应。Wang等人[67]引入了共价炔酰胺基(alkyneamide)制备了聚集诱导发光纳米光敏剂MBTP-PA,实现了铁死亡和焦亡介导的PDT免疫联合治疗。此外,碳点(CDs)作为一种生物功能性良好的新型光敏剂,目前已报道多种具有细胞器靶向性的碳点基光敏剂,促进了PDT的精准肿瘤治疗[68]。Zhang等人[69]设计了可调控ROS生成的碳点基光敏剂用于线粒体靶向的I/II型PDT治疗,这种新型光敏剂能够在线粒体中累积,并在光照下引发线粒体功能障碍,从而诱导癌细胞凋亡。理想的光敏剂多具有靶组织特异性、高选择性、高活性氧产率、良好的生物相容性和生物安全性等特点,新型光敏剂的开发为PDT的发展带来了更好的应用前景。通过对光敏剂的优化设计和性能提升,有望进一步推动PDT在肿瘤治疗中的广泛应用。

3.1.2 光源设备

国际上光动力光源的发展同样聚焦微型光源。植入式设备领域:西班牙团队开发可编程光纤LED系统,通过可调光谱实现个性化PDT,兼具低成本与柔性优势,支持内外联合治疗与精准剂量控制[70]。巴西团队研制OLED可穿戴光源,成功用于皮肤利什曼病治疗,验证柔性光源的临床适用性[71]。日本国防医学院开发超薄生物相容性OLED装置(厚度<1mm),植入大鼠腹腔后持续运行两周以上,通过节律性低强度光彻底清除肝癌病灶,为深部肿瘤治疗提供新方案[72]。东京理工大学同步研发660nm无线供电植入系统,实现长期体内光疗。韩国团队结合微型LED与蛋白酶B响应纳米粒子,开发神经胶质瘤微创联合治疗系统,兼具局部高效与全身安全性[73]。光源制造技术:韩国科学技术院研发的3D折纸结构μLED面膜通过水泡辅助激光转移技术实现每秒50芯片高精度量产,临床试验显示其抗衰老效果显著,口周区域皮肤弹性提升达340%[74]

3.1.3 临床各学科发展现状

(1) PDT在呼吸系统肿瘤中的研究进展

光动力治疗在病变直径<1.0cm的中央型肺癌的治疗时被认定为最佳适应证。日本Usuda[75]等报道应用NPe6-PDT可使直径<2.0cm病灶的实现与直径<1.0cm的病灶同样的治疗效果。他们研究了直径>2.0cm的病灶,进行NPe6-PDT可使肿瘤较长时间处于稳定状态,可较好生活质量。因而NPe6-PDT针对直径>2.0cm的姑息性治疗是一项有意义的治疗方法。新冠疫情期间肺癌患者合并新冠感染同时合并细菌感染导致治疗难度增大。Gennady Meerovich[76]等报道,采用使用聚阳离子光敏剂的光动力治疗中央型肺癌合并SARS-COV-2感染和细菌感染取得了很好的疗效,未来可能是一个很好的研究方向。国外针对光动力治疗在肺癌方面的研究也主要针对于基础研究。因近几年肺外周结节病变日益增多,Khaled Ramadan[77]等报道,采用5-ALA和NPe6对猪模型(肺外周结节)进行肺灌注给药,然后进行照射,可实现肺部光照的同质性,照射剂量的可靠性,为今后针对肺外周结节的光动力治疗提供了理论基础。

(2) PDT在食管癌中的研究进展

光动力治疗(PDT)在食管癌中的应用近年来在国内外均取得显著进展,但研究方向、技术侧重及临床应用规范存在差异。

①技术研发与创新

光敏剂开发

国内:聚焦天然化合物及纳米靶向技术。华卟啉钠(我国自主研发的第二代血卟啉药物)在III期临床试验中显示中晚期食管癌患者食管狭窄缓解率达50%,吞咽困难控制率近90%。

国外:以合成光敏剂为主,如美国批准的二氢卟吩类光敏剂HPPH和酞菁类光敏剂。日本研究团队开发的近红外光敏剂IR-780(穿透深度>10 mm)已进入临床前试验。

②临床应用与疗效

早期食管癌

国内:多中心研究显示PDT对早期食管癌的5年生存率达89.3%,优于传统内镜切除。

国外:日本研究显示PDT治疗早期食管癌的局部完全缓解率达95%,且无严重并发症。

中晚期姑息治疗

国内:PDT联合免疫检查点抑制剂(如帕博利珠单抗)使客观缓解率提升至48%,中位生存期延长至7-14.2个月。

国外:美国研究显示PDT联合化疗可显著改善吞咽困难,但光敏剂成本较高,基层推广受限。

③规范化与挑战

指南与共识

国内:2024年修订的《中国食管癌光动力治疗临床应用专家共识》明确了PDT的根治性与姑息性适应症,并纳入国家卫健委诊疗指南。

国外:欧美国家较早将PDT纳入食管癌治疗指南,但适应症范围较窄,主要限于早期病变和姑息性治疗。

(3) PDT在直肠癌中的研究进展

由于在研发资金方面的大量投入,目前欧美、日韩等发达国家在结直肠癌光动力治疗的进步和采用方面处于领先地位;近些年得益于我国政府的支持和科学技术的进步,国内光动力疗法在结直肠癌治疗中的临床试验和应用逐渐增多,取得了快速发展。光动力疗法凭借其高选择性和低毒性的优势,逐渐成为临床治疗肿瘤的新方法之一。Dohmoto M等报道,光动力治疗进展期结直肠癌,1年完全应答率为44%,部分应答率为35%。Dohmoto等对71例晚期直肠癌患者行PDT治疗,结果表明79%患者症状有所缓解,其中完全缓解率为35%,而相关的治疗并发症发生率低于10%。Guidolin K回顾分析了19项研究,其中接收了光动力治疗结直肠癌患者总数为137例,肿瘤完全缓解率为40%,部分缓解率为35%;近年来国际上关于光敏剂临床研究逐步增多,并在纳米技术和光敏剂优化方面取得了突破。Simelane等研究了PEG修饰的金纳米粒子(PEG-AuNPs)作为光敏剂载体,并与锌酞菁四磺酸(ZnPcS4)结合,通过连接针对直肠癌特异性鸟苷酸环化酶C(GCC)受体的单克隆抗体(Anti-GCC),实现了对肿瘤细胞的高效靶向递送。研究发现,该纳米复合物在光动力治疗(PDT)作用下能够显著提高ZnPcS4在直肠癌细胞中的积累,并在三维(3D)肿瘤球体模型中展现出良好的抗肿瘤效果。Rodrigues等研究了不同类型的光敏剂在直肠癌PDT中的应用,发现卟啉和氯化物衍生物仍然是主流光敏剂,具有良好的光动力学特性和肿瘤选择性。研究者通过化学修饰提高光敏剂的水溶性,并利用纳米载体技术改善其生物分布,从而提高治疗效果。此外,研究还探讨了PDT与化疗、免疫治疗的联合策略,结果表明,PDT能够增强化疗药物的抗肿瘤作用,并激活免疫系统,提高治疗响应率。Dandash等探索了金属化酞菁(MPc)在直肠癌PDT中的应用,发现金属化修饰不仅能够增强光敏剂的光动力效应,还能提高其光吸收特性,使其在红外区具有更好的组织穿透能力。实验结果表明,MPc-PDT能够有效诱导肿瘤细胞凋亡,同时减少对周围正常组织的损伤。此外,研究者还尝试利用单壁碳纳米管(SWCNTs)作为光敏剂的载体,发现其能够提高光敏剂的稳定性,并增强PDT的杀伤效果。Abrahamse等进一步研究了纳米粒子在直肠癌PDT中的应用,开发了一种ZnPcS4-AuNPs-抗GCC单抗的纳米复合体系,并在体外和动物模型中进行了验证。结果显示,该纳米体系能够显著提高光敏剂的肿瘤靶向性,并在较低的光照剂量下实现更高的细胞杀伤率。研究者认为,该纳米体系有望成为未来PDT治疗直肠癌的有效策略。

尽管PDT在直肠癌治疗中展现出良好的前景,但仍面临一些挑战,如光敏剂的选择性递送、光照参数的优化以及肿瘤微环境的影响等。未来研究将进一步探索PDT与其他治疗手段的联合策略,并优化纳米技术在PDT中的应用,以提高治疗效果和患者预后。

(4) PDT在胆道肿瘤中的研究进展

国外最新的胆道肿瘤治疗文献中以综述和基础研究较多,临床研究匮乏。国际光动力疗法研究组[78]首次探索了如何利用仿生囊泡将光敏剂输送到培养的胆管癌细胞中,然后通过PDT进行治疗。研究人员制备了两种类型的仿生囊泡:细胞囊泡(CVs)是通过超声介导对胆管癌(TFK-1)细胞进行纳米化而制成的,而细胞膜囊泡(CMVs)则是通过分离 TFK-1 细胞和细胞器膜,然后通过超声进行纳米囊化而制成的。CVs和CMVs都符合最佳体内给药所需的理化特性。这些仿生囊泡对培养的肿瘤细胞没有暗毒性,并能以均匀分散的方式吸收,对靶细胞进行光敏作用。总之,CVs和CMVs是一种有效的光敏剂平台,在体外没有固有的细胞毒性,而且具有很高的 PDT 疗效。后续研究需要证明其在体内的适用性、无毒性、有效的肿瘤靶向性和治疗效力。尽管基础研究显示出光明的治疗方向,但临床研究尚未见系统报道。

(5) PDT在下生殖道肿瘤中的研究进展

国际上多个国家已经将列为系统光动力疗法作为下生殖道肿瘤的临床方法之一。Istomin等用Photolon®-PDT治疗112例子宫颈HSIL患者(CIN2:24例,CIN3:88例), 治疗3个月后完全缓解率为92.8%(104/112),HPV转阴率53.4%(47/88)。15例患者怀孕,其中6例阴道分娩,2例行剖宫产手术,1例分娩死胎,2例因自身原因要求终止妊娠,4例因医学指征终止妊娠,未发生胚胎毒性或致畸性。Qiao等[79]对31例子宫颈HSIL患者行HiPorfin®-PDT治疗,治疗3~6个月后有效率为96.8%, HPV清除率为87.1%。Choi 等对15例患者(VINⅡ3例, VINⅢ4例, VaINⅡ 2例, VaINⅢ 3例,佩吉特病3例)行Photogem-PDT, 3个月随访完全缓解率为80%(12/15),2例完全缓解患者在治疗后12个发现复发,12个月完全缓解率为71.4%(10/14)。北京大学深圳医院珍教授团队已发表多篇SCI证实系统光动力疗法在下生殖道肿瘤系统治疗方面的有效性[80,81],并在上述研究成果基础上主笔书写了专家共识[82]

(6) PDT在泌尿系肿瘤中的研究进展

光动力疗法(PDT)于1983年被日美多国团队用于膀胱癌治疗,此后历经重要革新。早期用血卟啉衍生物(HpD)时发现,PDT对原位癌清除效果好。全膀胱照射完全缓解率达60%-100%。技术发展使PDT形成差异化应用。局限性肿瘤采用100 - 200 J/cm²高剂量局部照射,弥漫性病变用10 - 50 J/cm²低剂量全膀胱治疗。国外有多个新型光敏剂用于膀胱癌治疗,如膀胱灌注5-氨基酮戊酸(5-ALA)替代静脉注射HpD ,无需避光,全身光毒性反应发生率降为零,在难治性非肌层浸润性膀胱癌(NMIBC)完全缓解率达40% 。膀胱癌PDT分治疗性和辅助性,前者消除广泛性病灶,后者用于术后防复发。近年来,国外纳米光敏剂的基础及临床前研究方兴未艾,光动力联合其它抗肿瘤疗法用于膀胱癌以提高疗效是临床研究的重要策略。

(7) PDT在口腔肿瘤中的研究进展

本年度国外在PDT应用于口腔潜在恶性疾患和口腔肿瘤方面的研究取得了显著进展,呈现出以下主要研究趋势:在临床疗效评估方面,系统综述表明,对于口腔潜在恶性疾患、早期口腔肿瘤、无法手术的晚期病例及复发病例,PDT显示出良好的临床应用潜力[83-86],但研究提示PDT治疗OLK的总体复发率仍达19%,突显了术后长期随访和风险管理的重要性[87]。在医疗资源紧张的地区,PDT因其治疗周期短、可门诊操作等特性,成为经济高效的口腔肿瘤治疗方式[88]。在基础研究方面,国外学者进一步探索了PDT治疗中的潜在分子机制。例如,PDT能上调自然杀伤(natural killer, NK)细胞活化配体表达,从而增强NK细胞介导的细胞毒性作用[89];此外,PDT的疗效可能受细胞内信号通路糖原合成酶激酶3β、核因子-κB和β-连环蛋白(β-catenin)等关键分子影响,为精准治疗设计提供了理论依据[90]。此外,研究者利用纳米粒子实现光敏剂在肿瘤组织的精准富集,在动物模型中表现出卓越的抗肿瘤效果[91,92],5-ALA新型凝胶制剂也表现出细胞毒性提高、副作用减少的优势,有望进一步优化临床应用[93]

(8)皮肤肿瘤中的研究进展

在国际上,光动力疗法(PDT)在非黑色素瘤皮肤癌(NMSC)治疗领域的研究和应用也取得了诸多重要进展。临床方面,研究了基底细胞癌(BCC)对PDT的治疗反应,发现肿瘤大小、组织学亚型和维生素D状态等因素会影响治疗效果,且新辅助口服维生素D可加速肿瘤消退[94]。顺铂与PDT联合使用可增强治疗效果并减少顺铂的副作用,为癌症治疗提供了新的联合策略思路[95]。通过结合PDT和冷等离子体来优化鳞状细胞癌(SCC)的治疗,为提高PDT的抗肿瘤效果提供了新的方法[96]。西班牙的多中心研究分析了影响PDT治疗BCC和BD疗效的临床、组织学和分子因素,发现肿瘤厚度、p53、β-catenin和GLUT1等生物标志物与治疗反应密切相关,强调了个性化治疗的重要性[97]。综述文章详细综述了PDT治疗鲍温病(BD)的临床反应、复发率、安全性及美容效果,强调了PDT在治疗难以手术或伤口愈合不良的肿瘤中的价值,并指出定期随访的重要性[98]。光敏剂方面,单羰基姜黄素类化合物有望作为潜在光敏剂在皮肤癌PDT中的应用,为开发新型光敏剂提供了方向[99]。有研究对ALA诱导的原卟啉IX(PpIX)和二氢卟吩e6(Ce6)的差异进行了比较,发现单纯ALA舌下含服较直接口服的荧光强度更强,联合使用5-ALA和Ce6发现,Ce6主要积聚在肿瘤的中心区域,而PpIX主要积聚在肿瘤边缘区域,提示光敏剂联合使用的临床必要性[100]。技术方面,日本的研究开发了一种新型的光学微针透镜阵列用于PDT,优化了光传输并并有望实现针对不同类型皮肤癌的靶向治疗[101]。这些国际研究不仅丰富了PDT的临床应用经验,也为未来的研究方向和技术改进提供了重要参考。

3.2 国际重大研究计划和重大研究项目

3.3 我国研究现存优势与不足

3.3.1 在基础研究中的问题

目前关于光动力疗法的应用研究存在样本量小、随访时间短的局限性,同时光敏剂的临床应用仍有很多问题待解决,包括光穿透受限、肿瘤靶向能力弱、肿瘤细胞蓄积有限等,临床上批准使用的还很少。光敏剂的设计从第一代发展到第二、三代已经取得了许多重大进展,未来的研究方向可从以下几方面发展:(1)光穿透人体组织位置较浅,要着重于开发激发波长为700~1300nm的光敏剂,实现对深层组织的穿透力;(2)光敏剂的靶向运输效率有限,在肿瘤组织中蓄积浓度不稳定,阻碍了光动力治疗的疗效发挥。因此需要考虑更高效的靶向运载体系与光敏剂结合;(3)光敏剂发挥作用需要消耗氧气,而肿瘤组织是乏氧环境,因此需要需氧量小或可自产氧的新光敏体系;(4)辨别定位肿瘤细胞的准确性仍需提高,设计出对应的激活光敏剂,增强光敏剂对病变组织的选择性,只在肿瘤区发挥作用,减少对健康组织的副作用。(5)光敏剂在肿瘤组织和正常组织内的药物代谢差及持续时间是治疗时机选择的重要因素,而这要受到组织类型和血供特点的影响,这方面的研究直接影响疗效。

目前PDT是治疗晚期肺癌的姑息性化疗或放疗的可靠替代方法。在未来随着光敏剂的发展,PDT治疗还可以作为新辅助治疗,联合或不联合化疗,以达到更好效果的切除减小不同类型的肿瘤,提高生存质量和总生存期。

3.3.2 在临床应用中的问题

PDT与传统的癌症治疗方法相比,具有治疗效果较好、副作用较低、耗时短、愈合后几乎没有疤痕等优点。但是,治疗的具体疗效和应用策略缺乏多中心研究的循证医学数据支撑。而这些多中心研究在确定入排标准方面受到该技术本身——即以早期肿瘤和晚期股息治疗为主的限制,研究缓慢,临床研究的不便制约了该技术的快速发展。

【主编】

胡效坤   青岛大学附属医院

邹 珩   北京中医药大学东直门医院

李 伟   青岛大学附属医院

【副主编】

王洪武   北京中医药大学东直门医院

胡韶山   浙江省人民医院

王宏志   中国科学院合肥肿瘤医院

张恒柱   江苏省苏北人民医院

陈谦明   浙江大学医学院附属口腔医院

李瑞珍   北京大学深圳医院

陈 昊    兰州大学第二附属医院

崔永胜   胜利油田中心医院


 

【编委】(按姓氏拼音排序)

毕 红   安徽大学材料科学与工程学院

但红霞   四川大学华西口腔医院

范惠珍   江西省宜春市人民医院

黄明东   福州大学

胡林军   北京桓兴肿瘤医院

林存智   青岛大学附属医院

李长忠   北京大学深圳医院

李 媛   北京中医药大学东直门医院

李 敬   四川大学华西口腔医院

刘 昱   北京大学深圳医院

唐瑶云   湖南湘雅医院

田 军   中国医学科学院肿瘤医院深圳医院

王秀丽   上海市皮肤病医院

王春喜   解放军总医院第一医学中心

王佩茹   上海市皮肤病医院

吴裕文   江西省宜春市人民医院

谢 蕊    哈尔滨医科大学肿瘤医院

闫秀伟   浙江省人民医院

杨洛琦   北京中医药大学

阴慧娟   中国医学科学院生物

曾 昕   四川大学华西口腔医院

张梦曦    河南科技大学第一附属医院

赵 行    四川大学华西口腔医院

曹 彬    青岛大学附属医院

张 兵    中国科学院合肥肿瘤医院

张国龙   上海市皮肤病医院

吴瑞芳   北京大学深圳医院

吴 平    湖南湘雅医院

李新宇   山东省立医院

参考文献(向上滑动阅览)

[1] Liang L, Wang W, Li M, Xu Y, Lu Z, Wei J, Tang BZ, Sun F, Tong R. Cancer Photodynamic Therapy Enabled by Water-Soluble Chlorophyll Protein. ACS Appl Mater Interfaces. 2025 Mar 6.

[2] An W, Zhang K, Li G, Zheng S, Cao Y, Liu J. Hypericin mediated photodynamic therapy induces ferroptosis via inhibiting the AKT/mTORC1/GPX4 axis in cholangiocarcinoma. Transl Oncol. 2025 Feb; 52:102234.

[3] Cardinali CAEF, Fabiano de Freitas C, Sonchini Gonçalves R, Amanda Pedroso de Morais F, Nunes de Lima Martins J, Martins YA, Fernando Comar J, de Souza Bonfim-Mendonça P, Tessaro AL, Kimura E, Caetano W, Hioka N, Brunaldi K, Ravanelli MI. "Effects of Redox Status on Immediate Hypericin-Mediated Photodynamic Therapy in Human Glioblastoma T98G Cell Line". ACS Omega. 2024 Dec 28;10(1):1100-1109.

[4] 苏增平.合成生物学策略构建新型苝醌类光敏剂[D].江南大学,2024.

[5] Xie M, Jiang C, Zhang C, Wu Y, Zhang X, Yao R, Han C, Dai Y, Xu K, Zheng S. Tumor microenvironment triggered iron-based metal organic frameworks for magnetic resonance imaging and photodynamic-enhanced ferroptosis therapy. J Colloid Interface Sci. 2025 May;685:382-395. 

[6] Chen Z, Tian Z, Wu Y, Liu S. DNA tetrahedron nanomedicine for enhanced antitumor and antimetastatic effect through the amplification of mitochondrial oxidative stress. Acta Biomater. 2025 Feb 6:S1742-7061(25)00096-0

[7] Shanmugapriya K, Kang HW. Cellulose nanocrystals/cellulose nanofibrils-combined astaxanthin nanoemulsion for reinforcement of targeted tumor delivery of gastric cancer cells. Int J Pharm. 2024 Dec 25;667(Pt B):124944.

[8] Manoharan D, Wang LC, Chen YC, et al. Catalytic Nanoparticles in Biomedical Applications: Exploiting Advanced Nanozymes for Therapeutics and Diagnostics. Adv Healthc Mater. 2024 Sep;13(22):e2400746.

[9]Fang B, Bai H, Zhang J, et al. Albumins constrainting the conformation of mitochondria-targeted photosensitizers for tumor-specific photodynamic therapy[J]. Biomaterials, 2025, 315: 122914.

[10]Peng Y, Mo R, Yang M, et al. Mitochondria-Targeting AIEgens as Pyroptosis Inducers for Boosting Type-I Photodynamic Therapy of Tongue Squamous Cell Carcinoma[J]. ACS nano, 2024, 18(38): 26140-26152.

[11]Cai H, Wu X, Jiang L, et al. Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy[J]. Chinese Chemical Letters, 2024, 35(4): 108946.

[12]Xiang C, Liu Y, Ding Q, et al. Precise Molecular Engineering of Multi‐Suborganelle Targeted NIR TypeI AIE Photosensitizer and Design of Cell Membrane‐Anchored Anti‐Tumor Pyroptosis Vaccine[J]. Advanced Functional Materials, 2024: 2417979.

[13]Zou J, Li Z, Zhu Y, et al. pH/GSH dual responsive nanosystem for nitric oxide generation enhanced type I photodynamic therapy[J]. Bioactive materials, 2024, 34: 414-421.

[14]Li Y, Zhang C, Wu Q, et al. Enzyme‐activatable near‐infrared photosensitizer with high enrichment in tumor cells based on a multi‐effect design[J]. Angewandte Chemie International Edition, 2024, 63(7): e202317773.

[15]He M, Zhang M, Xu T, et al. Enhancing photodynamic immunotherapy by reprograming the immunosuppressive tumor microenvironment with hypoxia relief[J]. Journal of Controlled Release, 2024, 368: 233-250.

[16]Dai W, Zhou X, Zhao J, Lei L, Huang Y, Jia F, Tang Z, Ji J, Jin Q. Tumor microenvironment-modulated nanoparticles with cascade energy transfer as internal light sources for photodynamic therapy of deep-seated tumors. Biomaterials. 2025 Jan;312:122743. doi: 10.1016/j.biomaterials.2024.122743. Epub 2024 Aug 6. PMID: 39111233.

[17]Han Q, Zou P, Wei X, Chen J, Li X, Quan L, Wang R, Xing L, Xue X, Zhou Y, Chen M. An esophageal stent integrated with wireless battery-free movable photodynamic-therapy unit for targeted tumor treatment. Mater Today Bio. 2024 Dec 9;30:101394. doi: 10.1016/j.mtbio.2024.101394. PMID: 39759842; PMCID: PMC11697610.

[18] Li M, Wang C, Yu Q, Chen H, Ma Y, Wei L, Wu MX, Yao M, Lu M. A wearable and stretchable dual-wavelength LED device for home care of chronic infected wounds. Nat Commun. 2024 Oct 30;15(1):9380. doi: 10.1038/s41467-024-53579-6. PMID: 39477919; PMCID: PMC11525593.

[19] Zhang, J., Mao, X., Jia, Q. et al. Body-worn and self-powered flexible optoelectronic device for metronomic photodynamic therapy. npj Flex Electron 8, 60 (2024). https://doi.org/10.1038/s41528-024-00345-9

[20] Xue Z, Chou W, Xu Y, Cheng Z, Ren X, Sun T, Tong W, Xie Y, Chen J, Zhang N, Sheng X, Wang Y, Zhao H, Yang J, Ding H. Battery-free optoelectronic patch for photodynamic and light therapies in treating bacteria-infected wounds. Biosens Bioelectron. 2024 Oct 1;261:116467. doi: 10.1016/j.bios.2024.116467. Epub 2024 Jun 8. PMID: 38901392.

[21] Liu J, Sun B, Li W, Kim HJ, Gan SU, Ho JS, Rahmat JNB, Zhang Y. Wireless sequential dual light delivery for programmed PDT in vivo. Light Sci Appl. 2024 May 15;13(1):113. doi: 10.1038/s41377-024-01437-x. PMID: 38744817; PMCID: PMC11094163.

[22] Yifan Zhang, Guangle Feng, Ting He, Min Yang, Jing Lin, Peng Huang. Traceable Lactate-Fueled Self-Acting Photodynamic Therapy against Triple-Negative Breast Cancer. Research. 2024;7:0277.DOI:10.34133/research.0277

[23] Qian Han, Zengyi Fang, Rui Lin, Junyang Chen, Xianhao Wei, Cuicui Gong, Zhixin Yang, Pingjin Zou, Jingyuan Zhu, Lili Xing, Xinyu Xue, Jinyi Lang, Yi Zhou, Meihua Chen. Piezo-photodynamic therapy of Au@PEG-ZnO nanostructures enabled with a battery-free wireless cancer therapeutic dot, Nano Energy,2024;125:109530.

[24] Yuan Chen, Hongye Guan, Xinlu Wang, Yao Wen, Qingqing He, Rui Lin, Zhixin Yang, Shan Wang, Xinyu Zhu, Tianyan Zhong, Lili Xing, Xinyu Xue, Tao Chen. Implantable and wireless-controlled antibacterial patch for deep abscess eradication and therapeutic efficacy monitoring. Nano Energy,2024;131:110193.

[25] Qiao Y, Liu X, Zheng Y, Zhang Y, Li Z, Zhu S, Jiang H, Cui Z, Wu S. Wireless Powered Microwave-Light Conversion Platform with Dual-Stimulus Nanoresponder Coating for Deep-Seated Photodynamic Therapy. ACS Nano. 2024 Jul 2;18(26):17086-17099. doi: 10.1021/acsnano.4c03654. Epub 2024 Jun 19. PMID: 38952327.

[26] Yuan, Y., Yan, D., Duan, R., Xiong, H., Wen, W., Wang, S. and Zhang, X. (2025), A Flexible Antibacterial Gel Electrochemiluminescence Device for Monitoring and Therapy of Chronic Diabetic Wounds. Aggregate e703. https://doi.org/10.1002/agt2.703

[27] Zhirong Gu, Liu Wu, Jinxing Li,et al. Bibliometric and visual analysis of photodynamic therapy for lung cancer from 2010 to 2022.  Translational cancer research[J] 2024 Feb 29;13(2):738-751

[28] Lin Cunzhi; Wang Jjingyu; Ma Yijiang; Han Weizhong; Cao Yiwei; Shao Mingju;

Cui Shichao. Effect of a 630 nm light on vasculogenic mimicry in a549 lung

adenocarcinoma  cells in vitro[J]. Photodiagnosis and Photodynamic Therapy,2023, 44: 103831.

[29]Lin Cunzhi; Zhang Yuanyuan; Liao Jiemei; Cui Shichao; Gao Zhe; Han Weizhong.

Effect of photodynamic therapy mediated by hematoporphyrin derivatives on small  cell lung cancer h446 cells and bronchial epithelial beas-2b cells[J]. Lasers in medical science,2024, 39(1): 65-72.  

[30]Nana Li , Shichao Cui , Aizhen Yang , Baohong Xiao , Yiwei Cao , Xiaohui Yang , Cunzhi Lin. Sequence-dependent effects of hematoporphyrin derivatives (HPD) photodynamic therapy and cisplatin on lung adenocarcinoma cells.  Photodiagnosis and Photodynamic Therapy. 2024(47), ttps://doi.org/10.1016/j.pdpdt.2024.104102.

[31] Tingting Liu, Enhua Zhang, Shichao Cui, Haoyu Dai, Xiaohui Yang, Cunzhi Lin. Effects of 630 nm laser on apoptosis, metastasis, invasion and epithelial-to- mesenchy mal transition of human lung squamous cell carcinoma H520 cells mediated by hematoporphyrin derivatives[J]. Lasers in Medical Science. 2024,39:228.

[32]牛建明,赵晨茜,李润浦等.注射用紫杉醇(白蛋白结合型)联合光动力疗法治疗晚期非小细胞肺癌致中心气道狭窄的临床效果[J].广西医学,2023, 45 (8) :916-922.

[33]Zhou, J. et al.DVDMS (Sinoporphyrin sodium)-mediated photodynamic therapy (PDT) vs treatment of physician’s choice in patients with advanced esophageal cancer (EC): Preliminary results of DYNA-Esophagus03, a randomized, open-labeled, multicenter phase IIIb study.Annals of Oncology, Volume 35, S881

[34]Chen Q,Mo S,Zhu L,et al.Prognostic implication of UBE2C+CD8+T cell in neoadjuvant immune checkpoint blockade plus chemotherapy for locally advanced esophageal cancer[J].Int Immunopharmacol,2024,130:111696.

[35] Zhao XH,Gao HM,Wen JY,et al.Immune checkpoint inhibitors combined with or without radio(chemo)therapy for locally advanced or recurrent/metastatic esophageal squamous cell carcinoma[J].Discov Oncol,2023,14(1):165.

[36]Zhao XH,Gao HM,Wen JY,et al.Immune checkpoint inhibitors combined with or without radio(chemo)therapy for locally advanced or recurrent/metastatic esophageal squamous cell carcinoma[J].Discov Oncol,2023,14(1):165.

[37] XU B, HE P, WANG Y, et al. PDT for Gastric Cancer - the view from China[J]. Photodiagnosis Photodyn Ther, 2023, 42: 103366.

[38] YU Y, YU R, WANG N, et al. Photodynamic therapy in combination with immune checkpoint inhibitors plus  chemotherapy for first-line treatment in advanced or metastatic gastric or  gastroesophageal junction cancer: A phase 2-3 clinical trial protocol[J]. Front Pharmacol, 2023, 14: 1063775.

[39] HUI YJ, CHEN H, PENG XC, et al. Up-regulation of ABCG2 by MYBL2 deletion drives Chlorin e6-mediated photodynamic  therapy resistance in colorectal cancer[J]. Photodiagnosis Photodyn Ther, 2023, 42: 103558.

[40] ZHU M, HUANG B, YANG G, et al. Hydrogen Sulfide (H(2)S) Activatable Photodynamic Therapy Against Colon Cancer by  Tunable FRET Effect[J]. Chem Asian J, 2025, 20(1): e202400840.

[41] HE YC, HAO ZN, LI Z, et al. Nanomedicine-based multimodal therapies: Recent progress and perspectives in  colon cancer[J]. World J Gastroenterol, 2023, 29(4): 670-681.

[42]Wang W, Y Gao, J Xu, et al., 2024. A NRF2 Regulated and the Immunosuppressive Microenvironment Reversed Nanoplatform for Cholangiocarcinoma Photodynamic-Gas Therapy. Adv Sci (Weinh). 11,14, e2307143. DOI: 10.1002/advs.202307143.

[43]Chen H, H Li, H Li, et al., 2025. Umbrella review of adjuvant photodynamic therapy for cholangiocarcinoma palliative treatment. Photodiagnosis Photodyn Ther. 51, 104472. DOI: 10.1016/j.pdpdt.2025.104472.

[44] Zheng RS, Chen R, Han BF, et al. Cancer incidence and mortality in China, 2022[J]. Zhonghua Zhong Liu Za Zhi, 2024,46(3):221-231.Doi:10.3760/cma.j.cn112152-20240119-00035.

[45] Liu Y, Wu R, Li C, Wei L, Li R. Photodynamic therapy with HiPorfin for cervical squamous intraepithelial lesion at childbearing age[J]. Photodiagnosis Photodyn Ther, 2024,46:104018.Doi:10.1016/j.pdpdt.2024.104018.

[46] Liu Y, Wu R, Li C, Wei L, Li R. Successful pregnancy and delivery after HiPorfin photodynamic therapy for cervical high-grade squamous intraepithelial lesion[J]. Photodiagnosis Photodyn Ther, 2024,46:104062.Doi:10.1016/j.pdpdt.2024.104062.

[47] Liu Y, Li R, Li C, et al. Photodynamic therapy compared with loop electrosurgical excision procedure in patients with cervical high-grade squamous intraepithelial lesion[J]. Sci Rep, 2024,14(1):27090.Doi:10.1038/s41598-024-78445-9.

[48] Liu Y, Li R, Li C, Shang J, Wei L, Wu R. Hiporfin-photodynamic therapy for high-grade squamous intraepithelial lesions of the endocervical canal in young women[J]. Sci Rep, 2024,14(1):28423.Doi:10.1038/s41598-024-79980-1.

[49] LI X, LIU J, TONG P, et al. Efficacy of photodynamic therapy for oral multifocal papilloma: a case report [J]. Int J Oral Maxillofac Surg, 2024, 53(12): 1028-31.

[50] LI C, WANG D, DING J. Potential of photodynamic therapy as a minimally vasive treatment for oral verrucous carcinoma [J]. Photodiagnosis Photodyn Ther, 2024, 49: 104320.

[51] 吕世萍, 杨璐, 金鑫. 光动力治疗右颊黏膜疣状癌1例报道及文献回顾 [J]. 口腔疾病防治, 2024, 32(2): 131-6.

[52] SONG Y, TANG F, LIU J, et al. A complete course of photodynamic therapy reduced the risk of malignant transformation of oral leukoplakia [J]. Photodiagnosis Photodyn Ther, 2024, 49: 104338.

[53] WANG F, SONG Y, XU H, et al. Prediction of the short-term efficacy and recurrence of photodynamic therapy in the treatment of oral leukoplakia based on deep learning [J]. Photodiagnosis Photodyn Ther, 2024, 48: 104236.

[54] YANG D, YANG D, SONG Y, et al. Ferroptosis Induction Enhances Photodynamic Therapy Efficacy for OLK [J]. J Dent Res, 2024, 103(12): 1227-37.

[55] DONG Y, ZENG K, AI R, et al. Single-cell transcriptome dissecting the microenvironment remodeled by PD1 blockade combined with photodynamic therapy in a mouse model of oral carcinogenesis [J]. MedComm (2020), 2024, 5(7): e636.

[56] CHEN L, YIN Q, ZHANG H, et al. Protecting Against Postsurgery Oral Cancer Recurrence with an Implantable Hydrogel Vaccine for In Situ Photoimmunotherapy [J]. Adv Sci (Weinh), 2024, 11(46): e2309053.

[57] YIN Q, ZHANG J, ZHANG H, et al. Cascade Nanoreactor Employs Mitochondrial-Directed Chemodynamic and δ-ALA-Mediated Photodynamic Synergy for Deep-Seated Oral Cancer Therapy [J]. Adv Healthc Mater, 2024, 13(19): e2304639.

[58] LAN Z, LIU W J, YIN W W, et al. Biomimetic MDSCs membrane coated black phosphorus nanosheets system for photothermal therapy/photodynamic therapy synergized chemotherapy of cancer [J]. J Nanobiotechnology, 2024, 22(1): 174.

[59] LI X, HAO M, LIU A, et al. Dual-activity nanozyme as an oxygen pump to alleviate tumor hypoxia and enhance photodynamic/ NIR-II photothermal therapy for sniping oral squamous cell carcinoma [J]. Acta Biomater, 2024, 190: 476-87.

[60] LI X, LI Z, SU Y, et al. Carrier-Free Hybrid Nanoparticles for Enhanced Photodynamic Therapy in Oral Carcinoma via Reversal of Hypoxia and Oxidative Resistance [J]. Pharmaceutics, 2024, 16(9).

[61] YU L, XU Z, ZHU G, et al. High-Performance Photodynamic Therapy of Tongue Squamous Cell Carcinoma with Multifunctional Nano-Verteporfin [J]. Int J Nanomedicine, 2024, 19: 2611-23.

[62] ZHANG Y, YE S, ZHOU Y, et al. Salvianolic acid B as a potent nano-agent for enhanced ALA-PDT of oral cancer and leukoplakia cells [J]. Oral Dis, 2024, 30(3): 1091-9.

[63] 付凯钰 常, 史恩宇, 史澍睿. 共载吲哚菁绿和Nrf2-siRNA的多功能纳米粒子对抗口腔鳞状细胞癌的体外作用研究 [J]. 口腔医学研究, 2024, 40(5): 422-8.

[64]Liu J, Kang D W, Fan Y, et al. Nanoscale covalent organic framework with staggered stacking of phthalocyanines for mitochondria-targeted photodynamic therapy[J]. Journal of the American Chemical Society, 2023, 146(1): 849-857.

[65]He L, Ma D. Self-assembled phthalocyanine-based nano-photosensitizers in photodynamic therapy for hypoxic tumors[J]. Materials Chemistry Frontiers, 2024, 8(23): 3877-3897.

[66]Zhen W, Kang D W, Fan Y, et al. Simultaneous protonation and metalation of a porphyrin covalent organic framework enhance photodynamic therapy[J]. Journal of the American Chemical Society, 2024, 146(24): 16609-16618.

[67]Wang B, Zhang G, Chen Z, et al. Lab‐in‐Cell: A Covalent Photosensitizer Reverses Hypoxia and Evokes Ferroptosis and Pyroptosis for Enhanced Anti‐Tumor Immunity[J]. Advanced Materials, 2025: 2415673.

[68]Zhang H, Liu Y, Qu S. Recent advances in photo‐responsive carbon dots for tumor therapy[J]. Responsive Materials, 2024, 2(2): e20240012.

[69]Zhang Y, Jia Q, Nan F, et al. Carbon dots nanophotosensitizers with tunable reactive oxygen species generation for mitochondrion-targeted type I/II photodynamic therapy[J]. Biomaterials, 2023, 293: 121953.

[70] Navarrete de Gálvez E, Fonda Pascual P, Aguilera Arjona J, de Andrés Díaz JR, Navarrete de Gálvez M, Perera Mohamed S, de Gálvez Aranda MV. Proposal and operational evaluation of a device for external and internal photodynamic therapy treatments. Photodiagnosis Photodyn Ther. 2025 Feb;51:104440. doi: 10.1016/j.pdpdt.2024.104440. Epub 2024 Dec 5. PMID: 39645008.

[71] Cabral FV, Riahi M, Persheyev S, Lian C, Cortez M, Samuel IDW, Ribeiro MS. Photodynamic therapy offers a novel approach to managing miltefosine-resistant cutaneous leishmaniasis. Biomed Pharmacother. 2024 Aug;177:116881. doi: 10.1016/j.biopha.2024.116881. Epub 2024 Jun 24. PMID: 38917757.

[72]Yujiro Itazaki, Kei Sakanoue, Katsuhiko Fujita, Izumi Kirino, Kazuhiro Eguchi, Yutaka Miyazono, Ryoichi Yamaguchi, Takasumi Tsunenari, Takao Sugihara, Kenji Kuwada, Naoki Kobayashi, Tsuyoshi Goya, Katsuyuki Morii, Hironori Tsujimoto, Yuji Morimoto. Photodynamic Therapy for Deep Organ Cancer by Implantable Wireless OLEDs. bioRxiv 2024.11.18.624193; doi: https://doi.org/10.1101/2024.11.18.624193

[73] J. Kim, H. K. Lee, J. Park, S. I. Jeon, I. S. Lee, W. S. Yun, Y. Moon, J. Choi, M. K. Shim, J. Kim, H. Cho, N. Shim, N. Hwang, G. R. Koirala, M. Gwak, S. Han, D.-H. Kim, W. S. Chang, T. Kim, K. Kim, Implantable MicroLED-Mediated Chemo-Photodynamic Combination Therapy for Glioma Treatment. Adv. Funct. Mater. 2024, 34, 2316386.

[74] Kim MS, An J, Lee JH, Lee SH, Min S, Kim YB, Song M, Park SH, Nam KY, Park HJ, Kim KS, Oh SH, Hahn D, Moon J, Park JW, Park JS, Kim TS, Kim BJ, Lee KJ. Clinical Validation of Face-Fit Surface-Lighting Micro Light-Emitting Diode Mask for Skin Anti-Aging Treatment. Adv Mater. 2024 Dec;36(50):e2411651. doi: 10.1002/adma.202411651. Epub 2024 Oct 22. PMID: 39439130.

[75]Takumi Sonokawa, Mitsunobu Ino, Jitsuo Usuda et al. Long-term outcomes of PDT for centrally-located early lung cancers with tumor diameters > 2.0 cm Photodiagnosis and photodynamic therapy[J]. 2024 Jun;47:

[76]Gennady Meerovich, Evgeniya Kogan, Igor Romanishkin et al. Potential of photodynamic therapy using polycationic photosensitizers in the treatment of lung cancer patients with SARS-CoV-2 infection and bacterial complications: Our recent experience Photodiagnosis and photodynamic therapy[J]. 2025 Feb;51:104447 

[77]Khaled Ramadan, Tina Saeidi, Edson Brambate, et al. Development of a protocol for whole-lung in vivo lung perfusion-assisted photodynamic therapy using a porcine model Journal of biomedical optics[J]. 2024 Nov;29(11):118001 

[78]Li M, EDC Bosman, OM Smith, et al., 2024. Comparative analysis of whole cell-derived vesicular delivery systems for photodynamic therapy of extrahepatic cholangiocarcinoma. J Photochem Photobiol B. 254, 112903. DOI: 10.1016/j.jphotobiol.2024.112903.

[79] Qiao J, Qiu H, Chen Q, et al. Systemic Photodynamic Therapy vs. Loop Electrosurgical Excision: Treatment of Hight Grade Squamous Intraepithelial Lesion[J]. Chin J Laser Med Surg, 2024,33(5):181-188

[80] Liu Y, Wu R, Li C, Duan L, Wei L, Li R. HiPorfin photodynamic therapy for vaginal high-grade squamous intraepithelial lesion[J]. Archives of Gynecology and Obstetrics, 2024,310(2):1197-1205.Doi:10.1007/s00404-024-07600-4.

[81] Liu Y, Wu R, Li C, et al. Hiporfin photodynamic therapy for early-stage cervical cancer: A case report[J]. Photodiagnosis Photodyn Ther, 2024:104422.Doi:10.1016/j.pdpdt.2024.104422.

[82] 刘昱, 杜辉, 谭一舟, et al. 血卟啉注射液光动力疗法治疗子宫颈高级别鳞状上皮内病变专家共识(2025版)[J]. 中国激光医学杂志, 2025,34(1):30-35.Doi:10. 13480/j. issn1003-9430. 2025. 0030.

[83] KAZEMI K S, KAZEMI P, MIVEHCHI H, et al. Photodynamic Therapy: A Novel Approach for Head and Neck Cancer Treatment with Focusing on Oral Cavity [J]. Biol Proced Online, 2024, 26(1): 25.

[84] CARDOSO M, MARTO C M, PAULA A, et al. Effectiveness of photodynamic therapy on treatment response and survival in patients with recurrent oral squamous cell carcinoma: A systematic review [J]. Photodiagnosis Photodyn Ther, 2024, 48: 104242.

[85] YOUSEFI-KOMA A A, BANIAMERI S, YOUSEFI-KOMA H, et al. Comparative evaluations of different surgical and non-surgical treatment methods for early invasive and micro invasive squamous cell carcinoma in the oral and maxillofacial regions: A systematic review [J]. J Stomatol Oral Maxillofac Surg, 2024, 126(2): 102034.

[86] PERALTA-MAMANI M, SILVA B M D, HONÓRIO H M, et al. CLINICAL EFFICACY OF PHOTODYNAMIC THERAPY IN MANAGEMENT OF ORAL POTENTIALLY MALIGNANT DISORDERS: A SYSTEMATIC REVIEW AND META-ANALYSIS [J]. J Evid Based Dent Pract, 2024, 24(2): 101899.

[87] BHATTARAI B P, SINGH A K, SINGH R P, et al. Recurrence in Oral Leukoplakia: A Systematic Review and Meta-analysis [J]. J Dent Res, 2024, 103(11): 1066-75.

[88] GUPTA P, KUMAR R R, TAYAL M, et al. Photodynamic therapy for early and recurrent oral cancers and pre-malignant lesions. Need of the hour for India [J]. Photodiagnosis Photodyn Ther, 2024, 50: 104378.

[89] MOLON A C, HEGUEDUSCH D, NUNES F D, et al. 5-ALA mediated photodynamic therapy increases natural killer cytotoxicity against oral squamous cell carcinoma cell lines [J]. J Biophotonics, 2024, 17(9): e202400176.

[90] NICOLÁS-MORALA J, ALONSO-JUARRANZ M, BARAHONA A, et al. Comparative response to PDT with methyl-aminolevulinate and temoporfin in cutaneous and oral squamous cell carcinoma cells [J]. Sci Rep, 2024, 14(1): 7025.

[91] CUI J, MAKITA Y, OKAMURA T, et al. Near-Infrared Light Photodynamic Therapy with PEI-Capped Up-Conversion Nanoparticles and Chlorin e6 Induces Apoptosis of Oral Cancer Cells [J]. J Funct Biomater, 2024, 15(11).

[92] SAHOVALER A, VALIC M S, TOWNSON J L, et al. Nanoparticle-mediated Photodynamic Therapy as a Method to Ablate Oral Cavity Squamous Cell Carcinoma in Preclinical Models [J]. Cancer Res Commun, 2024, 4(3): 796-810.

[93] D'ANTONIO D L, MARCHETTI S, PIGNATELLI P, et al. Effect of 5-Aminolevulinic Acid (5-ALA) in "ALADENT" Gel Formulation and Photodynamic Therapy (PDT) against Human Oral and Pancreatic Cancers [J]. Biomedicines, 2024, 12(6).

[94]Maytin EV, Zeitouni NC, Updyke A, Negrey J, Shen AS, Heusinkveld LE, Mack JA, Hu B, Anand S, Maytin TA, Giostra L, Warren CB, Hasan T. A Clinical Trial to Determine the Impact of Tumor Size, Histological Subtype, and Vitamin D Status on the Therapeutic Response of Basal Cell Carcinoma to Photodynamic Therapy. medRxiv [Preprint]. 2025 Feb 3:2025.01.30.25321144.

[95]Arjmand B, Bahadorimonfared A, Jahani Sherafat S, Moravvej H, Rezaei M, Daneshimehr F, Asri N, Farahani M. Comparison of the Efficacy of Photodynamic Therapy Versus Cisplatin Application. J Lasers Med Sci. 2024 Dec 24;15:e67.

[96]Karrer S, Unger P, Spindler N, Szeimies RM, Bosserhoff AK, Berneburg M, Arndt S. Optimization of the Treatment of Squamous Cell Carcinoma Cells by Combining Photodynamic Therapy with Cold Atmospheric Plasma. Int J Mol Sci. 2024 Oct 8;25(19):10808.

[97]Antonetti P, Pellegrini C, Caponio C, Bruni M, Dragone L, Mastrangelo M, Esposito M, Fargnoli MC. Photodynamic Therapy for the Treatment of Bowen's Disease: A Review on Efficacy, Non-Invasive Treatment Monitoring, Tolerability, and Cosmetic Outcome. Biomedicines. 2024 Apr 3;12(4):795.

[98]Bernal-Masferrer L, Gracia-Cazaña T, Najera-Botello L, Gomez-Mateo MC, Cerro P, Matei MC, Gallego-Rentero M, González S, Juarranz A, Gilaberte Y. Analysis of tumoral, stromal and glycolitic markers in the response basal cell carcinoma and Bowen disease to photodynamic therapy in real life. Photodiagnosis Photodyn Ther. 2025 Feb;51:104442.

[99]Antonetti P, Pellegrini C, Caponio C, Bruni M, Dragone L, Mastrangelo M, Esposito M, Fargnoli MC. Photodynamic Therapy for the Treatment of Bowen's Disease: A Review on Efficacy, Non-Invasive Treatment Monitoring, Tolerability, and Cosmetic Outcome. Biomedicines. 2024 Apr 3;12(4):795.

[100]Efendiev K, Alekseeva P, Skobeltsin A, Shiryaev A, Pisareva T, Akhilgova F, Mamedova A, Reshetov I, Loschenov V. Combined use of 5-ALA-induced protoporphyrin IX and chlorin e6 for fluorescence diagnostics and photodynamic therapy of skin tumors. Lasers Med Sci. 2024 Oct 31;39(1):266.

[101]Park J, Zhang J, Kim B. Development of optical microneedle-lens array for photodynamic therapy. Biomed Microdevices. 2025 Jan 28;27(1):6.

技术支持:乐问医学

 

版权所有:中国抗癌协会 | 技术支持:北方网 | 联系我们
津ICP备09011441号