[1]Centeno P P, Pavet V, Marais R. The journey from melanocytes to melanoma[J]. Nat Rev Cancer, 2023,23(6):372-390.
[2]张学军等. 皮肤性病学[M]. 人民卫生出版社, 2018.
[3]中国临床肿瘤学会指南工作委员会. 中国临床肿瘤学会(CSCO)黑色素瘤诊疗指南-2024[M]. 人民卫生出版社, 2024.
[4]Long G V, Swetter S M, Menzies A M, et al. Cutaneous melanoma[J]. Lancet, 2023,402(10400):485-502.
[5]Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024,74(3):229-263.
[6]Millet A, Martin A R, Ronco C, et al. Metastatic Melanoma: Insights Into the Evolution of the Treatments and Future Challenges[J]. Med Res Rev, 2017,37(1):98-148.
[7]Sun J, Ding J, Yue H, et al. Hypoxia-induced BNIP3 facilitates the progression and metastasis of uveal melanoma by driving metabolic reprogramming[J]. Autophagy, 2025,21(1):191-209.
[8]Wen Y, Wang H, Yang X, et al. Pharmacological targeting of casein kinase 1delta suppresses oncogenic NRAS-driven melanoma[J]. Nat Commun, 2024,15(1):10088.
[9]Ding T, Xu H, Zhang X, et al. Prohibitin 2 orchestrates long noncoding RNA and gene transcription to accelerate tumorigenesis[J]. Nat Commun, 2024,15(1):8385.
[10]Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021,18(5):280-296.
[11]Zhou Q, Meng Y, Li D, et al. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies[J]. Signal Transduct Target Ther, 2024,9(1):55.
[12]Meng Y, Zhou Q, Dian Y, et al. Ferroptosis: A Targetable Vulnerability for Melanoma Treatment[J]. J Invest Dermatol, 2025.
[13]Zhou Q, Dian Y, He Y, et al. Propafenone facilitates mitochondrial-associated ferroptosis and synergizes with immunotherapy in melanoma[J]. J Immunother Cancer, 2024,12(11).
[14]Hanahan D, Coussens L M. Accessories to the crime: functions of cells recruited to the tumor microenvironment[J]. Cancer Cell, 2012,21(3):309-322.
[15]Vandereyken K, Sifrim A, Thienpont B, et al. Methods and applications for single-cell and spatial multi-omics[J]. Nat Rev Genet, 2023,24(8):494-515.
[16]Stahl P L, Salmen F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics[J]. Science, 2016,353(6294):78-82.
[17]Liu H, Gao J, Feng M, et al. Integrative molecular and spatial analysis reveals evolutionary dynamics and tumor-immune interplay of in situ and invasive acral melanoma[J]. Cancer Cell, 2024,42(6):1067-1085.
[18]Wei C, Sun W, Shen K, et al. Delineating the early dissemination mechanisms of acral melanoma by integrating single-cell and spatial transcriptomic analyses[J]. Nat Commun, 2023,14(1):8119.
[19]Shi H, Tian H, Zhu T, et al. Single-cell sequencing depicts tumor architecture and empowers clinical decision in metastatic conjunctival melanoma[J]. Cell Discov, 2024,10(1):63.
[20]Fridman W H, Zitvogel L, Sautes-Fridman C, et al. The immune contexture in cancer prognosis and treatment[J]. Nat Rev Clin Oncol, 2017,14(12):717-734.
[21]Yin T, Wang G, Wang L, et al. Breaking NGF-TrkA immunosuppression in melanoma sensitizes immunotherapy for durable memory T cell protection[J]. Nat Immunol, 2024,25(2):268-281.
[22]Wu N, Li J, Li L, et al. MerTK(+) macrophages promote melanoma progression and immunotherapy resistance through AhR-ALKAL1 activation[J]. Sci Adv, 2024,10(40):eado8366.
[23]Feng P, Yang Q, Luo L, et al. Vps34 sustains Treg cell survival and function via regulating intracellular redox homeostasis[J]. Cell Death Differ, 2024,31(11):1519-1533.
[24]Tao H, Jin C, Zhou L, et al. PRMT1 Inhibition Activates the Interferon Pathway to Potentiate Antitumor Immunity and Enhance Checkpoint Blockade Efficacy in Melanoma[J]. Cancer Res, 2024,84(3):419-433.
[25]Li C, Wang Z, Yao L, et al. Mi-2beta promotes immune evasion in melanoma by activating EZH2 methylation[J]. Nat Commun, 2024,15(1):2163.
[26]Liu D, Wei B, Liang L, et al. The Circadian Clock Component RORA Increases Immunosurveillance in Melanoma by Inhibiting PD-L1 Expression[J]. Cancer Res, 2024,84(14):2265-2281.
[27]Hu Z, Ott P A, Wu C J. Towards personalized, tumour-specific, therapeutic vaccines for cancer[J]. Nat Rev Immunol, 2018,18(3):168-182.
[28]Chan J D, Lai J, Slaney C Y, et al. Cellular networks controlling T cell persistence in adoptive cell therapy[J]. Nat Rev Immunol, 2021,21(12):769-784.
[29]Melcher A, Harrington K, Vile R. Oncolytic virotherapy as immunotherapy[J]. Science, 2021,374(6573):1325-1326.
[30]Huang D, Zhu X, Ye S, et al. Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides[J]. Nature, 2024,625(7995):593-602.
[31]Chen Y, Chen X, Bao W, et al. An oncolytic virus-T cell chimera for cancer immunotherapy[J]. Nat Biotechnol, 2024,42(12):1876-1887.
[32]Fu R, Qi R, Xiong H, et al. Combination therapy with oncolytic virus and T cells or mRNA vaccine amplifies antitumor effects[J]. Signal Transduct Target Ther, 2024,9(1):118.
[33]Khalil D N, Smith E L, Brentjens R J, et al. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy[J]. Nat Rev Clin Oncol, 2016,13(5):273-290.
[34]Milone M C, Xu J, Chen S, et al. Engineering enhanced CAR T-cells for improved cancer therapy[J]. Nat Cancer, 2021,2(8):780-793.
[35]Zhu C, Liu C, Wu Q, et al. Remolding the tumor microenvironment by bacteria augments adoptive T cell therapy in advanced-stage solid tumors[J]. Signal Transduct Target Ther, 2024,9(1):307.
[36]Zhao Y, Chen J, Andreatta M, et al. IL-10-expressing CAR T cells resist dysfunction and mediate durable clearance of solid tumors and metastases[J]. Nat Biotechnol, 2024,42(11):1693-1704.
[37]Zhu W, Wei T, Xu Y, et al. Non-invasive transdermal delivery of biomacromolecules with fluorocarbon-modified chitosan for melanoma immunotherapy and viral vaccines[J]. Nat Commun, 2024,15(1):820.
[38]Liu M, Feng Y, Lu Y, et al. Lymph-targeted high-density lipoprotein-mimetic nanovaccine for multi-antigenic personalized cancer immunotherapy[J]. Sci Adv, 2024,10(11):eadk2444.
[39]Liu P, Guo J, Xie Z, et al. Co-Delivery of aPD-L1 and CD73 Inhibitor Using Calcium Phosphate Nanoparticles for Enhanced Melanoma Immunotherapy with Reduced Toxicity[J]. Adv Sci (Weinh), 2025,12(7):e2410545.
[40]Shan H, Chen M, Zhao S, et al. Acoustic virtual 3D scaffold for direct-interacting tumor organoid-immune cell coculture systems[J]. Sci Adv, 2024,10(47):eadr4831.
[41]Chen M, Shan H, Tao Q, et al. Mimicking Tumor Metastasis Using a Transwell-Integrated Organoids-On-a-Chip Platform[J]. Small, 2024,20(27):e2308525.
[42]Wu Q, Pan J, Lin W, et al. Clinicopathologic features, delayed diagnosis, and survival in amelanotic acral melanoma: A comparative study with pigmented melanoma[J]. J Am Acad Dermatol, 2024,90(2):369-372.
[43]Zhang Y, Wu J, Cai X, et al. Nevus-associated acral melanoma has lower risk of recurrence and mortality than de novo acral melanoma: A multicenter, retrospective analysis of 482 patients[J]. J Am Acad Dermatol, 2025,92(3):538-545.
[44]Tang B, Duan R, Zhang X, et al. Five-Year Follow-Up of POLARIS-01 Phase II Trial: Toripalimab as Salvage Monotherapy in Chinese Patients With Advanced Melanoma[J]. Oncologist, 2024,29(6):e822-e827.
[45]Tang B, Chen Y, Jiang Y, et al. Toripalimab in combination with HBM4003, an anti-CTLA-4 heavy chain-only antibody, in advanced melanoma and other solid tumors: an open-label phase I trial[J]. J Immunother Cancer, 2024,12(10).
[46]Liu J, Wang X, Li Z, et al. Neoadjuvant oncolytic virus orienx010 and toripalimab in resectable acral melanoma: a phase Ib trial[J]. Signal Transduct Target Ther, 2024,9(1):318.
[47]Du Y, Dai J, Mao L, et al. Phase Ib study of anlotinib in combination with anti-PD-L1 antibody (TQB2450) in patients with advanced acral melanoma[J]. J Eur Acad Dermatol Venereol, 2024,38(1):93-101.
[48]He Y, Huang X, Li X, et al. Preliminary efficacy and safety of YSCH-01 in patients with advanced solid tumors: an investigator-initiated trial[J]. J Immunother Cancer, 2024,12(5).
[49]Robert C, Long G V, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation[J]. N Engl J Med, 2015,372(4):320-330.
[50]Robert C, Long G V, Brady B, et al. Five-Year Outcomes With Nivolumab in Patients With Wild-Type BRAF Advanced Melanoma[J]. J Clin Oncol, 2020,38(33):3937-3946.
[51]Tawbi H A, Schadendorf D, Lipson E J, et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma[J]. N Engl J Med, 2022,386(1):24-34.
[52]Long G V, Hauschild A, Santinami M, et al. Adjuvant Dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma[J]. N Engl J Med, 2017,377(19):1813-1823.
[53]Robert C, Grob J J, Stroyakovskiy D, et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma[J]. N Engl J Med, 2019,381(7):626-636.
[54]Atkins M B, Lee S J, Chmielowski B, et al. Combination Dabrafenib and Trametinib Versus Combination Nivolumab and Ipilimumab for Patients With Advanced BRAF-Mutant Melanoma: The DREAMseq Trial-ECOG-ACRIN EA6134[J]. J Clin Oncol, 2023,41(2):186-197.
[55]Sarnaik A A, Hamid O, Khushalani N I, et al. Lifileucel, a Tumor-Infiltrating Lymphocyte Therapy, in Metastatic Melanoma[J]. J Clin Oncol, 2021,39(24):2656-2666.
[56]Blank C U, Lucas M W, Scolyer R A, et al. Neoadjuvant Nivolumab and Ipilimumab in Resectable Stage III Melanoma[J]. N Engl J Med, 2024,391(18):1696-1708.
[57]Ascierto P A, Cioli E, Chiarion-Sileni V, et al. Neoadjuvant plus adjuvant combined or sequenced vemurafenib, cobimetinib and atezolizumab in patients with high-risk, resectable BRAF-mutated and wild-type melanoma: NEO-TIM, a phase II randomized non-comparative study[J]. Front Oncol, 2023,13:1107307.
[58]Miura J T, Zager J S. Neo-DREAM study investigating Daromun for the treatment of clinical stage IIIB/C melanoma[J]. Future Oncol, 2019,15(32):3665-3674.
[59]Weber J S, Carlino M S, Khattak A, et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study[J]. Lancet, 2024,403(10427):632-644.
[60]Long G V, Lipson E J, Hodi F S, et al. First-Line Nivolumab Plus Relatlimab Versus Nivolumab Plus Ipilimumab in Advanced Melanoma: An Indirect Treatment Comparison Using RELATIVITY-047 and CheckMate 067 Trial Data[J]. J Clin Oncol, 2024,42(33):3926-3934.
[61]Tawbi H A, Hodi F S, Lipson E J, et al. Three-Year Overall Survival With Nivolumab Plus Relatlimab in Advanced Melanoma From RELATIVITY-047[J]. J Clin Oncol, 2024:JCO2401124.
[62]Hailemichael Y, Johnson D H, Abdel-Wahab N, et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity[J]. Cancer Cell, 2022,40(5):509-523.
[63]Guo J, Si L, Kong Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification[J]. J Clin Oncol, 2011,29(21):2904-2909.
[64]Mao L, Lian B, Li C, et al. Camrelizumab Plus Apatinib and Temozolomide as First-Line Treatment in Patients With Advanced Acral Melanoma: The CAP 03 Phase 2 Nonrandomized Clinical Trial[J]. JAMA Oncol, 2023,9(8):1099-1107.
[65]Tang M, Duan T, Lu Y, et al. Tyrosinase-Woven Melanin Nets for Melanoma Therapy through Targeted Mitochondrial Tethering and Enhanced Photothermal Treatment[J]. Adv Mater, 2024,36(44):e2411906.
[66]Yang Y, Zhang B, Xu Y, et al. An immunotherapeutic hydrogel booster inhibits tumor recurrence and promotes wound healing for postoperative management of melanoma[J]. Bioact Mater, 2024,42:178-193.
[67]Wei X, Zou Z, Zhang W, et al. A phase II study of efficacy and safety of the MEK inhibitor tunlametinib in patients with advanced NRAS-mutant melanoma[J]. Eur J Cancer, 2024,202:114008.
[68]Lian B, Li Z, Wu N, et al. Phase II clinical trial of neoadjuvant anti-PD-1 (toripalimab) combined with axitinib in resectable mucosal melanoma[J]. Ann Oncol, 2024,35(2):211-220.